Please wait a minute...
袁世斐, 吴红杰, 殷承良
上海交通大学 汽车电子控制技术国家工程实验室, 上海 200240
Simplified electrochemical model for Li-ion battery: lithium concentration estimation
YUAN Shi-fei, WU Hong-jie, YIN Cheng-liang
National Engineering Laboratory for Automotive Electronic Control Technology, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1216 KB)   HTML

为了降低锂电池电化学模型的计算复杂度,提出基于修正边界条件的简化电化学模型,用于估计锂电池内部的电解液浓度分布.采用Pade逼近技术分析简化电化学模型解析解,可得到降阶的分子-分母型传递函数模型.分别采用19.38 A和193.80 A的脉冲充放电工况进行仿真对比,结果显示所提出简化模型的最大相对误差分别约为0.867%和8.670%.时域和频域模拟仿真结果表明:相比于传统电化学模型,该简化模型对电池内部电解液相的浓度分布估计具有理想的精度,同时计算复杂度得到显著优化,具备实时应用的能力.

A simplified electrochemical model based on modified boundary conditions was proposed to estimate the internal lithium concentration of Li-ion battery in order to reduce the computation complexity. The Pade approximation method was used to simplify the analytical solution of the electrochemical model, and the reducedorder numerator-denominator-type transfer function could be obtained. The pulse charge and discharge profiles with the magnitudes of 19.38 A and 193.80 A were employed for model verification, and the simulation results indicate that the maximum relative errors are approximately 0.867% and8.670%, respectively. Time and frequency-domain simulation results show that the proposed model has ideal accuracy for internal lithium concentration estimation when compared to traditional electrochemical model, meanwhile its computational burden has been significantly optimized, which is suitable for real-time application.
出版日期: 2017-03-01
CLC:  U 464.1  


通讯作者: 吴红杰,男,助理研究员. ORCID: 0000-0002-0169-2841.     E-mail:
作者简介: 袁世斐(1987—),男,博士,从事电动汽车电池管理系统研究. ORCID:0000-0001-6699-646X. E-mail:
E-mail Alert


袁世斐, 吴红杰, 殷承良. 锂离子电池简化电化学模型:浓度分布估计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.03.007.

YUAN Shi-fei, WU Hong-jie, YIN Cheng-liang. Simplified electrochemical model for Li-ion battery: lithium concentration estimation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.03.007.

[1] WU H, YUAN S, ZHANG X, et al. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage [J]. Journal of Power Sources, 2015, 287: 108-118.
[2] YUAN S, WU H, YIN C. State of charge estimationusing the extended Kalman filter for battery management systems based on the ARX battery model [J]. Energies, 2013, 6(1): 444-470.
[3] YUAN S, WU H, MA X, et al. Stability analysis for li-ion battery model parameters and state of charge estimation by measurement uncertainty consideration [J]. Energies, 2015, 8(8): 7729-7751.
[4] PEI L, ZHU C, WANG T, et al. Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles [J]. Energy, 2014, 66: 766-778.
[5] LIU X, CHEN Z, ZHANG C, et al. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation [J]. Applied Energy, 2014, 123: 263-272.
[6] 戴海峰,魏学哲,孙泽昌.基于等效电路的内阻自适应锂离子电池模型[J].同济大学学报:自然科学版,2010,38(1): 98-102.
DAI Hai-feng, WEI Xue-zhe, SUN Ze-chang. An inner resistance adaptive model based on equivalent circuit of lithium-ion batteries [J]. Journal of Tongji University: Natural Science, 2010, 38(1): 98-102.
[7] 杨阳,汤桃峰,秦大同,等.电动汽车锂电池PNGV等效电路模型与SOC估算方法[J].系统仿真学报,2012,24(4): 938-942.
YANG Yang, TANG Tao-feng, QIN Da-tong, et al. PNGV Equivalent Circuit Model and SOC Estimation Algorithm of Lithium Batteries for Electric Vehicle [J]. Journal of System Simulation, 2012, 24(4): 938-942.
[8] 汤依伟.基于电化学—热耦合模型的锂离子动力电池放电行为研究[D].长沙:中南大学,2013.
TANG Yi-wei. Discharge behavior research of the lithium ion power battery based on the electrochemicalthermal coupling model [D]. Changsha: Central South University, 2013.
[9] 徐蒙.磷酸铁锂动力电池放电过程电化学—热耦合模型研究[D].北京:北京交通大学,2014.
XU Meng. Study on electrochemical and heat transfer model of LiFePO4 power battery during discharge process [D]. Beijing: Beijing Jiao Tong University,2014.
[10] DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell [J]. Journal of the Electrochemical Society, 1993, 140 (6): 1526-1533.
[11] FULLER T F, DOYLE M, NEWMAN J. Simulation and optimization of the dual lithium ion insertion cell [J]. Journal of the Electrochemical Society, 1994,141 (1): 1-10.
[12] NEWMAN J, TIEDEMANN W. Porous-electrode theory with battery applications [J]. AIChE Journal, 1975, 21 (1): 25-41.
[13] FORMAN J C, BASHASH S, STEIN J L, et al. Reduction of an electrochemistry-based Li-ion battery model via quasi-linearization and Padé approximation [J]. Journal of the Electrochemical Society, 2011,158 (2): A93-A101.
[14] FORMAN J C, BASHASH S, STEIN J L, et al. Reduction of an electrochemistry-based Li-ion battery health degradation model via constraint linearization and Padé approximation [C] ∥ ASME 2010 Dynamic Systems and Control Conference. Cambridge: American Society of Mechanical Engineers, 2010: 173-183.
[15] SMITH K A. Electrochemical modeling, estimation and control of lithium ion batteries [D]. University Park: The Pennsylvania State University, 2006.
[16] SMITH K A, WANG C Y. Solidstate diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles [J]. Journal of Power Sources, 2006, 161(1): 628-639.
[17] SMITH K A, RAHN C D, WANG C Y. Control oriented 1D electrochemical model of lithium ion battery [J]. Energy Conversion and Management, 2007,48(9): 2565-2578.
[18] SMITH K A, RAHN C D, WANG C Y. Model order reduction of 1D diffusion systems via residue grouping [J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(1): 011012.
[19] LEE J L, CHEMISTRUCK A, PLETT G L. One-dimensional physics-based reduced-order model of lithium-ion dynamics [J]. Journal of Power Sources, 2012, 220: 430-448.
[20] MARCICKI J, CANOVA M, CONLISK A T, et al. Design and parametrization analysis of a reducedorder electrochemical model of graphite/LiFePO 4 cells for SOC/SOH estimation [J]. Journal of Power Sources, 2013, 237: 310-324.
[21] RAHMAN M A, ANWAR S, IZADIAN A. Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method [J]. Journal of Power Sources, 2016, 307: 86-97.
[22] STETZEL K D, ALDRICH L L, TRIMBOLI M S, et al. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter [J]. Journal of Power Sources, 2015, 278: 490-505.
[23] OUYANG M, LIU G, LU L, et al. Enhancing the estimation accuracy in low state-of-charge area: a novel onboard battery model through surface state of charge determination [J]. Journal of Power Sources, 2014, 270: 221-237.
[24] PRAMANIK S, ANWAR S. Electrochemical model based charge optimization for lithium-ion batteries [J]. Journal of Power Sources, 2016, 313: 164-177.
[25] EDOUARD C, PETIT M, FORGEZ C, et al. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging [J]. Journal of Power Sources, 2016, 325: 482-494.
[26] GANESAN N, BASU S, HARIHARAN K S, et al. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension [J]. Journal of Power Sources, 2016, 322: 57-67.
[1] 姚栋伟, 吴锋, 杨志家, 俞小莉. 基于增量式数字PID的汽油机怠速控制研究[J]. J4, 2010, 44(6): 1122-1126.