Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
基于高清智能卡口路段行程时间的数据质量分析
付凤杰,龚越,王殿海,马东方
1. 浙江大学 建筑工程学院,浙江 杭州310058;
2. 浙江大学 海洋学院,浙江 杭州310058
Data quality analysis of link travel time based on HD smart gate
FU Feng jie, GONG Yue, WANG Dian hai, MA Dong fang
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. Ocean College, Zhejiang University, Hangzhou 310058, China
 全文: PDF(957 KB)   HTML
摘要:

通过分析行程时间估计参数与样本率的变化关系,发现样本率越大,路段行程时间的平均绝对百分误差越小,行程时间标准差的波动性越小;当样本率大于0.414时,样本数据计算得到行程时间参数满足精度及稳定性要求,由此确定行程时间数据的样本率阈值.考虑路段开口计算实际路段行程时间匹配率,并对其时空变化特征和显著性差异进行分析.实际数据表明,行程时间匹配率与路段及日期无关,稳定且均大于最小样本率;行程时间匹配率与时段有关,20:00至次日6:00时段内行程时间匹配率较一天内其他时段低,但仍大于最小样本率.综上可以确定高清智能卡口数据用于估计行程时间的可行性.

Abstract:

The relationship between the estimated parameters of travel time and the sample rate was analyzed. It was found that the bigger the sample rate is, the less the mean absolute percentage error (MAPE) of travel time and volatility of travel time standard deviation is. The travel time parameters obtained by sample data could fulfill required accuracy and stabilization when the sample rate was larger than 0.414. Thus, the sampling rate threshold of travel time was obtained. The actual match rate of travel time on the link was computed considering openings; the spatial-temporal characteristics and significant difference were analyzed. In the numerical analysis, actual data proves that the match rate of travel time is unrelated with link attribute and date, which is stable and larger than the sampling rate threshold. The match rate of travel time is related with time periods, which is lowest during 20:00 to 6:00 in the next day but still larger than the sampling rate threshold. Based on above, the feasibility of travel time estimation using traffic data collected by HD gate system is verified.

出版日期: 2016-09-22
:  U 491  
基金资助:

国家自然科学基金资助项目(51338008,61304191,51278454);国家科技支撑计划课题资助项目(2014BAG03B05);浙江省重点科技创新团队资助项目(2013TD09).

通讯作者: 王殿海,男,教授,博导.     E-mail: wangdianhai@sohu.com
作者简介: 付凤杰 (1990-),女,博士生,从事交通控制研究. ORCID: 0000-0001-5120-8440. E-mail: jiyoumushui@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

付凤杰,龚越,王殿海,马东方. 基于高清智能卡口路段行程时间的数据质量分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.09.17.

FU Feng jie, GONG Yue, WANG Dian hai, MA Dong fang. Data quality analysis of link travel time based on HD smart gate. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.09.17.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.09.17        http://www.zjujournals.com/eng/CN/Y2016/V50/I9/1761

[1] SEN A, AND THAKURIAH P. Estimation of static travel times in a dynamic route guidance system [J].Mathematical and Computer Modelling, 1995, 22(4), 83-101.
[2] SHIFTAN Y, BEKHOR S, AND ALBERT G. Route choice behaviour with pretrip travel time information [J]. IET Intelligent Transport Systems,2011, 5(3), 183-189.
[3] JAMSHIDNEJAD A, AND SCHUTTER B D. Estimation of the generalised average traffic speed based on microscopic measurements [J]. Transportmetrica A: Transport Science, 2015, 11(6): 525-546.
[4] BAN X J, HAO P, SUN Z. Real time queue length estimation for signalized intersections using travel times from mobile sensors [J]. Transportation Research Part C: Emerging Technologies,2011, 19(6): 1133-1156.
[5] 姜桂艳, 李琦, 董硕. 基于kNN和SCATS交通数据的路段行程时间估计方法 [J].西南交通大学学报, 2013, 48(2): 343-349.
JIANG Guiyan, LI Qi, DONG Shuo. Travel time estimation method using SCATS traffic data based on kNN algorithm [J]. Journal of Southwest Jiaotong University,2013, 48(2): 343-349.
[6] 张和生, 张毅, 胡东成. 路段平均行程时间估计方法 [J]. 交通运输工程学报, 2008, 8(1): 89-96.
ZHANG Hesheng, ZHANG Yi, HU Dongcheng. Estimation method of average travel time for road section [J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 89-96.
[7] JENELIUS E, KOUTSOPOULOS H N. Travel time estimation for urban road networks using low frequency probe vehicle data [J]. Transportation Research Part B: Methodological, 2013, 53: 64-81.
[8] LI Z, LI N, LIU F, et al. Shortterm forecasting of travel time based on license plate matching data [C] ∥IEEE International Conference on Automation and Logistics, Qingdao: IEEE, 2008: 1390-1395.
[9] FEI X, ZHANG Y, LIU K, et al. Bayesian dynamic linear model with switching for realtime shortterm freeway travel time prediction with license plate recognition data [J]. Journal of Transportation Engineering, 2013, 139(11): 1058-1067.
[10] KAZAGLI E, KOUTSOPOULOS H. Estimation of arterial travel time from automatic number plate recognition data \[J\]. Transportation Research Record: Journal of the Transportation Research Board, 2013(2391): 22-31.
[11] 杨晓光, 蔡润林, 庄斌.基于车牌自动识别系统的城市道路行程时间预测算法 [J]. 交通与计算机, 2005, 23(3): 29-32.
YANG Xiaoguang, CAI Runlin, ZHUANG Bin. Travel time prediction algorithm of urban road based on automatic license plate recognition [J]. Computer and Communications, 2005, 23(3): 29-32.
[12] 施莉娟, 朱健, 陈小鸿, 等.基础交通数据质量评价研究[J]. 交通信息与安全, 2011, 29(5): 57-61.
SHI Lijuan, ZHU Jian, CHEN Xiaohong, et al. Traffic data quality measurement [J]. Journal of Transportation Information and Safety, 2011, 29(5): 57-61.
[13] 李琦, 姜桂艳. 城市快速路车辆检测器数据质量评价与控制方法 [J]. 交通运输工程学报, 2013, 13(2): 120-126.
LI Qi, JIANG Guiyan. Quality evaluation and control method of vehicle detector data on urban expressway [J]. Journal of Transportation Engineering, 2013, 13(2): 120126.
[14] STATHOPOULOS A, KARLAFTIS M. Temporal and spatial variations of realtime traffic data in urban areas [J]. Transportation Research Record: Journal of the Transportation Research Board, 2001 (1768): 135-140.
[15] 石飞, 陆建, 王炜, 等. 居民出行调查抽样率模型 [J]. 交通运输工程学报, 2004, 4(4): 72-75.
SHI Fei, LU Jian, WANG Wei, et al. Sampling methods of resident trip investigation [J]. Journal of Transportation Engineering, 2004, 4(4): 72-75.
[16] TAYLOR M A P. Modelling travel time reliability with the burr distribution [J]. ProcediaSocial and Behavioral Sciences, 2012, 54: 75-83.
[17] 杨帆, 杨晓光, 云美萍. 城市道路间断流行程时间双峰分布 [J].同济大学学报:自然科学版, 2014, 2: 15.
YANG Fan, YANG Xiaoguang, YUN Meiping. Urban road interrupted flow travel time bimodal distribution [J]. Journal of Tongji University:Natural Science, 2014, 2: 15.
[18] DION F, RAKHA H. Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates [J]. Transportation Research Part CEmerging Technologies, 2006, 40(9), 745-766.

[1] 倪玲霖, 张帅超, 陈喜群. 基于手机信号令数据的居民出行空间效应[J]. 浙江大学学报(工学版), 2017, 51(5): 887-895.
[2] 曲昭伟, 曹宁博, 陈永恒, 白乔文, 康萌, 陈明涛. 信号交叉口的行人信号提前建模[J]. 浙江大学学报(工学版), 2017, 51(3): 538-544.
[3] 王福建, 龚成宇, 马东方, 郭伟伟, 王殿海. 采用交通出行量数据的多点联动瓶颈控制方法[J]. 浙江大学学报(工学版), 2017, 51(2): 273-278.
[4] 王韩麒, 陈红, 冯微, 刘玮蔚. 基于CPT的异质通勤者多维出行决策模型[J]. 浙江大学学报(工学版), 2017, 51(2): 297-303.
[5] 于谦, 李铁柱, 任彦铭. 乘客载重量对柴油公交车尾气排放影响分析[J]. 浙江大学学报(工学版), 2016, 50(10): 2009-2017.
[6] 王力,张立立,潘科,李正熙. 基于状态可控性分析的交叉口信号切换控制[J]. 浙江大学学报(工学版), 2016, 50(7): 1266-1275.
[7] 李明达,隗海林,门玉琢,包翠竹. 基于实际换挡规律的卡车列队行驶起步控制[J]. 浙江大学学报(工学版), 2016, 50(5): 887-892.
[8] 楼齐峰, 马晓龙, 叶盈, 梅振宇. 基于出行成本的停车收费和供给政策影响分析[J]. 浙江大学学报(工学版), 2016, 50(2): 257-264.
[9] 莫元富, 于德新, 宋军, 郭亚娟. 基于信道负载阈值的车联网信标消息生成策略[J]. 浙江大学学报(工学版), 2016, 50(1): 21-26.
[10] 王卫东,李俊杰,王京,傅庆湘,康文泓. 基于未确知测度的公路交通效率评价[J]. 浙江大学学报(工学版), 2016, 50(1): 48-54.
[11] 李清,胡志华. 基于多目标遗传算法的灾后可靠路径选择[J]. 浙江大学学报(工学版), 2016, 50(1): 33-40.
[12] 马明辉,杨庆芳,梁士栋,邢茹茹. 高速公路主线瓶颈区域的协调控制模型[J]. 浙江大学学报(工学版), 2015, 49(9): 1700-1706.
[13] 周旦, 马晓龙, 金盛, 王殿海. 混合非机动车交通流超车次率影响因素模型[J]. 浙江大学学报(工学版), 2015, 49(9): 1672-1678.
[14] 王福建, 戴美伟, 孙凌涛, 金盛. 基于多类跟驰行为的车头时距混合分布模型[J]. 浙江大学学报(工学版), 2015, 49(7): 1288-1294.
[15] 赵伟明, 王殿海, 朱文韬, 戴美伟. 基于改进NJW算法的交通控制时段划分[J]. 浙江大学学报(工学版), 2014, 48(12): 2259-2265.