Please wait a minute...
J4  2014, Vol. 48 Issue (2): 321-326    DOI: 10.3785/j.issn.1008-973X.2014.02.020
光学工程、工程力学     
受电弓弓头悬挂系统的随机跳跃与分岔
宦荣华, 宋亚轻, 朱位秋
浙江大学 应用力学研究所,浙江 杭州 310027
Stochastic jump and bifurcation of a pantograph carbon strip suspension system
HUAN Rong-hua, SONG Ya-qing, ZHU Wei-qiu
Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1748 KB)   HTML
摘要:

基于随机平均法研究考虑刚度非线性时DSA X型受电弓弓头悬挂子系统的随机动力学特性.建立弓头悬挂子系统的非线性动力学模型,基于受电弓的结构参数计算获得非线性刚度.弓网间接触压力简化为对弓头悬挂系统的周期和随机组合外激励,建立描述弓头悬挂动态行为的非线性随机微分方程.基于随机平均法得到弓头悬挂子系统的稳态响应统计量,研究非线性强度对稳态响应的影响规律.结果表明,弓头滑板的稳态响应出现随机跳跃,随着非线性强度的变化随机跳跃会产生或消失,即发生分岔.

Abstract:

This article is concerned with the stochastic dynamics of the suspension subsystem of DSA X pantograph considering nonlinearity of stiffness. Firstly, a nonlinear dynamic model of the suspension subsystem was developed where the nonlinear stiffness was obtained according to physical parameter values of pantograph. The contact force between the pantograph and the overhead contact line excites the subsystem, which had been modeled as a combination of harmonic and random excitation. The nonlinear stochastic differential equation describing the dynamic behavior of the suspension subsystem was formulated. Then, by using the stochastic averaging method, the statistics of the stationary responses of the suspension subsystem was obtained, and the effect of the intensity of nonlinearity on the stationary response was also studied. Numerical results show that the stochastic jump of the stationary response of the carbon strip and its bifurcation as the nonlinearity intensity’s change occurs.

出版日期: 2014-02-01
:  U 225  
基金资助:

国家自然科学基金资助项目(11372271); 国家“973”重点基础研究发展规划资助项目(2011CB711105); 浙江省自然科学基金(LY12A02004).

作者简介: 宦荣华(1979—),男,副教授,从事动力学与控制理论研究.E-mail: rhhuan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宦荣华, 宋亚轻, 朱位秋. 受电弓弓头悬挂系统的随机跳跃与分岔[J]. J4, 2014, 48(2): 321-326.

HUAN Rong-hua, SONG Ya-qing, ZHU Wei-qiu. Stochastic jump and bifurcation of a pantograph carbon strip suspension system. J4, 2014, 48(2): 321-326.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.02.020        http://www.zjujournals.com/eng/CN/Y2014/V48/I2/321

[1] WU T X, BRENNAN M J. Basic analytical study of pantograph-catenary system dynamics [J]. Vehicle System Dynamics, 1998, 30: 443456.
[2] CHO Y H, LEE K, PARK Y, et al. Influence of contact wire pre-sag on the dynamics of pantograph-railway catenary \
[J\]. International Journal of Mechanical Sciences. 2010, 52: 1471-1490.
[3] KIM J W, CHAE H C, PARK B S, et al. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force[J]. Journal of Sound and Vibration, 2007, 303: 405-427.
[4] ABDULLAH M A, MICHITSUJIY, NAGAI M, et al. Integrated simulation between flexible body of catenary and active control pantograph for contact force variation control [J]. Journal of Mechanical Systems for Transportation and Logistics, 2010, 3: 166-177.
[5] 邢海军,麻士琦,杨绍普.受电弓动态参数研究[J],振动、测试与诊断,2002, 22(3): 206 211.
XING Hai-jun, MA Shi-qi, YANG Shao-pu. Studies on dynamic parameters of pantograph [J]. Journal of Vibration, Measurement &Diagnosis, 2002, 22(3): 206-211.
[6] POETSCH G, EVANS J, MEISINGER R, et al. Pantograph catenary dynamics and control [J]. Vehicle System Dynamics, 1997, 28: 159-195.
[7] 陈恩利,邢海军.滞后非线性受电弓在多频激励下的共振与分岔问题[J].石家庄铁道学院学报,2000, 13(3): 44-47.
CHEN En-li, XING Hai-jun. The resonance and bifurcation in a hysteretic nonlinear pantograhp system with multi-frequency excitation[J]. Journal of Shijiazhuang Railway Institute, 2000, 13(3): 44-47.
[8] 韩福景,杨绍普,郭京波.参数激励下受电弓系统的分岔与混沌[J],石家庄铁道学院学报,2004, 17(1): 25-29.
HAN Fu-jing, YANG Shao-pu, GUO Jing-bo. Bifurcation and chaos of a pantograph system under parametric excitation [J]. Journal of Shijiazhuang Railway Institute, 2004, 17(1): 25-29.
[9] POZNIC P H, JERRELIND J, DRUGGE L. Experimental evaluation of nonlinear dynamics and coupled motions in a pantograph[C]∥Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego: ASME, 2009: 619-626.
[10] DRUGGE L, LARSSON T, BERGHUVUD A, et al, The nonlinear behavior of a pantograph current collector suspension[C]∥Proceedings of the ASME 1999 Design Engineering Technical Conferences. Las Vegas: ASME, 1999: 17.
[11] HUANG Zhi-long, ZHU Wei-qiu, SUZUKI Y. Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations[J]. Journal of Sound and Vibration, 2000, 238(2): 233-256.
[12] XU Z, ChEUNG Y K. Averaging method using generalized harmonic functions for strongly nonlinear oscillators [J]. Journal of Sound and Vibration, 1994, 174: 563-576.
[13] HUANG Zhi-Long, ZHU Wei-Qiu. Stochastic averaging of quasi-integrable hamiltonian systems under combined harmonic and white noise excitations [J]. International Journal of Non-Linear Mechanics, 2004, 39: 1421-1434.

No related articles found!