Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1658-1665    DOI: 10.3785/j.issn.1008-973X.2013.09.022
能源工程     
静电网格系统在旋流燃烧器流场测量中的应用
沈跃良1,周昊2 ,胡敏2 ,杨玉2 ,吴剑波2 ,岑可法2
1. 广东电网公司电力科学研究院,广东 广州 510080;2.浙江大学 能源清洁利用国家重点实验室,
浙江 杭州 310027
Application of electrostatic grid system in measuring flow characteristics of a swirl burner
 SHEN Yue-liang1,ZHOU Hao2, HU Min2, YANG Yu2,WU Jian-bo2, CEN Ke-fa2
1. Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou 510080, China;
2. State Key Laboratory of Clean Energy Utilization, Zhejiang University,Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了解决旋流燃烧器出口气固两相流的颗粒浓度测量问题,提出能够测量大空间范围内气固两相流的静电网格法,设计了静电网格系统,并将该系统应用于测量旋流燃烧器出口的气固两相流场.研究结果表明:静电网格法能够测量大空间内的气固两相流的颗粒相对浓度场,测得结果可定性地反映实际浓度场|当内、外二次风风速保持不变时,一次风风速和给料速率的增加会导致回流区的减小.

Abstract:

 In order to solve the difficulty of measuring the particle concentration in the gas-particle two-phase flow out of a swirl burner, a novel electrostatic grid method was introduced to measure the particle velocity and relative particle concentration distribution in large space, and an electrostatic grid system was designed and applied to measure the gas/particle flow field downstream of the burner exit.  Results show that the relative particle concentration of flow in large space can be obtained through the electrostatic grid method, and the measurement results can qualitatively reflect the real particle distribution. When the inner and outer secondary air speeds remain unchanged, the increase of the primary air speed or the feeding rate will lead to the decrease of the reflux area.

出版日期: 2013-09-01
:  TK 222  
基金资助:

国家“973”重点基础研究发展规划资助项目(2009CB219802);国家科技支撑计划资助项目(2011BAA04B01);全国优秀博士学位论文作者专项资金资助项目 (200747).

通讯作者: 周昊,男,教授,博导.     E-mail: zhouhao@cmee.zju.edu.cn
作者简介: 沈跃良(1971-),男,工程师,从事锅炉低氮燃烧和高温腐蚀研究.E-mail:13926009402@139.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

沈跃良,周昊 ,胡敏 ,杨玉 ,吴剑波 ,岑可法. 静电网格系统在旋流燃烧器流场测量中的应用[J]. J4, 2013, 47(9): 1658-1665.

SHEN Yue-liang,ZHOU Hao, HU Min2, YANG Yu,WU Jian-bo, CEN Ke-fa. Application of electrostatic grid system in measuring flow characteristics of a swirl burner. J4, 2013, 47(9): 1658-1665.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.09.022        http://www.zjujournals.com/eng/CN/Y2013/V47/I9/1658

[1] CHEN Zhi-chao, LI Zheng-qi, WANG Fu-qiang, et al. Gas/particle flow characteristics of a centrally fuel rich swirl coal combustion burner[J]. Fuel, 2008, 87(10): 2102-2110.
[2] CHEN Zhi-chao, LI Zheng-qi, JING Jian-ping. Gas/particle flow characteristics of two swirl burners[J]. Energy Conversion and Management, 2009, 50(5): 1180-1191.
[3] 张东东, 许宏庆, 何枫. 气固两相射流瞬时速度场和浓度场的PIV研究[J]. 清华大学学报:自然科学版, 2003, 43(11): 1491-1494.
ZHANG Dong-dong, XU Hong-qing, HE Feng. Particle imaging velocimetry of instantaneous velocity and concentration distributions in gas-solid two-phase jet flows[J]. Journal of Tsinghua University:Science and Technology, 2003, 43(11): 1491-1494.
[4] JAWORSKI Artur J, DYAKOWSKI Tomasz. Application of electrical capacitance tomography for measurement of gas-solid flow characteristics in a pneumatic conveying system[J]. Measurement Science and Technology, 2001, 12(8): 1109-1119.
[5] JAWORSKI Artur J, DYAKOWSKI Tomasz. Investigations of flow instabilities within the dense pneumatic conveying system[J]. Powder Technology, 2002, 125(2): 279-291.
[6] MILLER D, BAIMBRIDGE P, EYRE D. Technology status review of PF flow measurement and control methods for utility boilers[M]. \
[s.l.\]:Harwell Laboratory, Department of trade and industry, 2000.
[7] YAN Yong. Mass flow measurement of bulk solids in pneumatic pipelines[J]. Measurement Techniques, 1996, 7: 1687-1706.
[8] MATHUR M P, KLINZING G E. Flow measurement in pneumatic transport of pulverized coal[J]. Powder Technology, 1984, 40: 309-321.
[9] YAN Y, BYNE B, WOODHEAD S. Velocity-measurement of pneumatically conveyed solids using electrodynamic sensors[J]. Measurement Science, 1995, 6(5): 515-537.
[10] GAJEWSKI J B. Electrostatic flow probe and measuring system calibration for solids mass flow rate measurement[J]. Journal of Electrostatics, 1999, 45(4): 255-264.
[11] YAN Y, MA J. Measurement of particulate velocity under stack-flow conditions[J]. Measurement Science and Technology, 2000, 11(1): 59-65.
[12] YAN Y, MA J. Design and evaluation of electrostatic sensors for the measurement of velocity of pneumatically conveyed solids[J]. Flow Measurement and Instrumentation, 2000, 11(3): 195-204.
[13] MASUDA H, MATSUSAKA S, SHIMOMURA H. Measurement of mass flow rate of polymer powder based on static electrification of particles[J]. Advanced Powder Technology, 1998, 9(2): 169-179.
[14] 钟旺元. 基于静电相关法测量烟气速度和烟尘浓度的研究[D]. 武汉: 华中科技大学, 2008: 27-30.
ZHONG Wang-yuan. Research on the velocity of flue gas and dust concentration based on the electrostatic cross-correlation method[D]. Wuhan: Huazhong University of Science and Technology, 2008: 27-30.
[15] 徐苓安. 相关流量测量技术[M]. 天津市:天津大学出版社, 1988:68-78.

[1] 周昊, 吴剑波, 杨玉, 李亚鹏, 胡善涛, 岑可法. 旋流燃烧器出口气固两相流场的
光学波动法测量研究
[J]. J4, 2012, 46(12): 2189-2193.