Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1531-1536    DOI: 10.3785/j.issn.1008-973X.2013.09.003
计算机技术,无线电电子学     
基于层次化BoF模型和Spectral-HIK过滤的手势识别算法闯
跃龙,陈岭,陈根才
浙江大学 计算机科学与技术学院,浙江 杭州 310027
Hierarchical Bag-of-Features with Spectral-HIK filter  based hand posture recognition
CHUANG Yue-long, CHEN Ling, CHEN Gen-cai
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了解决基于计算机视觉的人类手势识别问题,提出一种名为层次化Bag-of-Features(BoF)的模型. 该模型通过对人手区域进行划分和对图像特征分别向水平和垂直轴投影来提取图像特征的空间分布信息. 为了准确快速地实现手势识别,构建一种基于直方图交叉核的手势识别分类算法. 该算法结构简单、运行效率高,而且充分利用层次化BoF模型的结构特点. 为了进一步提高在复杂背景下手势识别准确率和运行效率,采用一种基于谱和直方图交叉核的背景特征点过滤算法. 实验结果显示,所提算法对于简单背景下的手势识别准确率可达99.79%,而对于复杂背景下的识别准确率为80.01%.

Abstract:

 A new Bag-of-Features, namely hierarchical Bag-of-Features (H-BoF) was developed for the problem of computer vision based hand posture recognition. H-BoF captures image features- spatial information by dividing whole hand area into several sub-regions and projecting feature points onto horizontal and vertical directions respectively. To recognize hand postures accurately and rapidly, a simple yet effective measurement based on histogram intersection kernel (HIK) was introduced which took full advantages of the H-BoF to classify hand postures. To improve the accuracy and efficiency of hand posture recognition against complicated background, a spectral based method with HIK-spectral-HIK was proposed to filter background features. Experimental results showed that this method achieved 99.79% accuracy for uniform background samples, and 80.01% accuracy for complicated background samples.

出版日期: 2013-09-01
基金资助:

国家“核高基”重大科技专项课题资助项目(2010ZX01042-002-003);国家自然科学基金资助项目(60703040);浙江省科技计划重大资助项目(2007C13019);浙江省重大科技专项资助项目(2011C13042).

通讯作者: 陈岭,男,副教授.     E-mail: lingchen@cs.zju.edu.cn
作者简介: 闯跃龙(1977-),男,博士生,从事计算机视觉研究.E-mail:chuangyl@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

跃龙,陈岭,陈根才. 基于层次化BoF模型和Spectral-HIK过滤的手势识别算法闯[J]. J4, 2013, 47(9): 1531-1536.

CHUANG Yue-long, CHEN Ling, CHEN Gen-cai. Hierarchical Bag-of-Features with Spectral-HIK filter  based hand posture recognition. J4, 2013, 47(9): 1531-1536.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.09.003        http://www.zjujournals.com/eng/CN/Y2013/V47/I9/1531

[1] MCNEILL D. Hand and mind: what gestures reveal about thought [M].Chicago: University of Chicago Press, 1992:14-27.
[2] HUANG T S, WU Ying, LIN J. 3D model-based visual hand tracking [C]∥ Proceedings of International Conference on Multimedia and Expo. Lausanne: IEEE, 2002: 905-908.
[3] KIM H, FELLNER D W. Interaction with hand gesture for a back-projection wall [C]∥ Proceedings of Computer Graphics International. Washington: IEEE, 2004: 395-402.
[4] FLORES F, GARCIA J M, GARCIA J, et al. Hand gesture recognition following the dynamics of a topology-preserving network [C]∥ Proceedings of International Conference of Automatic Face and Gesture Recognition. Washington: IEEE, 2002: 318-323.
[5] BRETZNER L, LAPTEV I, LINDEBERG T. Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering [C]∥ Proceedings of International Conference on Automatic Face and Gesture Recognition. Washington: IEEE, 2002: 423-428.
[6] LAPTEV I, LINDBERG T. Tracking of multi-state hand models using particle filtering and a hierarchy of multi-scale image features [C]∥ Proceedings of IEEE Workshop on Scale-Space and Morphology. Vancouver: IEEE, 2006: 63-74.
[7] YIN Xiao-ming, XIE Ming. Hand posture segmentation, recognition and application for human-robot interaction [M]. Singapore: [s. n], 2007: 497-522.
[8] VIOLA P, JONES M J. Robust real-time face detection [J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
[9] KOLSCH M, TURK M. Robust hand detection [C]∥ Proceedings of International Conference on Automatic Face and Gesture Recognition. Seoul: IEEE, 2004: 614-619.
[10] WANG C C, WANG K C. Hand posture recognition using Adaboost with SIFT for human robot interaction [J]. Springer Lecture Notes in Control and Information Sciences, 2008, 60(2): 317-329.
[11] JUST A, RODRIGUEZ Y, MARCEL S. Hand posture classification and recognition using the modified census transform [C]∥ Proceedings of International Conference on Automatic Face and Gesture Recognition. Southampton: IEEE, 2006: 351356.
[12] LI Fei-fei, PIETRO P. A Bayesian hierarchical model for learning natural scene categories [C]∥ Proceedings of International Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 524-531.
[13] VEDALDI A, FULKERSON B. VLFeat: an open and portable library of computer vision algorithms [CP/OL]. [2012-01-10]. http:∥www.vlfeat.org/.
[14] CAO Yang, WANG Chang-hu, LI Zhi-wei, et al. Spatial-bag-of-features [C]∥ Proceedings of International Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 3352-3359.
[15] YU Guo-shen, MOREL J M. A fully affine invariant image comparison method [C]∥ Proceedings of International Conference on Acoustics, Speech, and Signal Processing. Taipei: IEEE, 2009: 1597-1600.
[16] WU Jian-xin, Rehg J M. Beyond the Euclidean distance: Creating effective visual codebooks using the Histogram Intersection Kernel [C]∥ Proceedings of International Conference on Computer Vision. Atlanta: IEEE, 2009: 630637.
[17] ESTRADA F J, FUA P, LEPETIT V, et al. Appearance-based Keypoint Clustering [C]∥ Proceedings of International Conference on Computer Vision and Pattern Recognition. Toronto: IEEE, 2009: 1279-1286.
[18] TRIESCH J, von der MALSBURG C. Robust classification of hand postures against complex backgrounds [C]∥ Proceedings of International Conference on Automatic Face and Gesture Recognition Conference. Killington: IEEE, 1996: 17017.

No related articles found!