计算机技术,无线电电子学 |
|
|
|
|
基于空间像素纯度指数的端元提取算法 |
崔建涛1,王晶1,厉小润1,赵辽英2 |
1.浙江大学 电气工程学院,浙江 杭州 310027;2.杭州电子科技大学 计算机应用技术研究所,浙江 杭州 310018 |
|
Endmember extraction algorithm based on spatial pixel purity index |
CUI Jian-tao1, WANG Jing1,LI Xiao-run1, ZHAO Liao-ying2 |
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2. Institute of Computer Application Technology, Hangzhou Dianzi University, Hangzhou 310018, China |
引用本文:
崔建涛,王晶,厉小润,赵辽英. 基于空间像素纯度指数的端元提取算法[J]. J4, 2013, 47(9): 1517-1523.
CUI Jian-tao, WANG Jing,LI Xiao-run, ZHAO Liao-ying. Endmember extraction algorithm based on spatial pixel purity index. J4, 2013, 47(9): 1517-1523.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.09.002
或
http://www.zjujournals.com/eng/CN/Y2013/V47/I9/1517
|
[1] MIAO L D, QI H R. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 765-777.
[2] BOARDMAN J W, KRUSE F A, GREEN R O. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries [C]∥ In Fifth JPL Airborne Earth Science Workshop. Pasadena:\[s.n.\], 1995: 23-26.
[3] WINTER M E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data [C]∥ In SPIE Imaging Spectrometry V. San Diego CA:SPIE, 1999: 266-275.
[4] NASCIMENTO J M P, DIAS J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910.
[5] TAO X T, WANG B, ZHANG L M, et al. A new endmember extraction algorithm based on orthogonal bases of subspace formed by endmembers [C]∥ Geoscience and Remote Sensing Symposium. Barcelona, Spain:\[s.n.\], 2007: 2006-2009.
[6] Chang C I, WU C C, LIU W M, et al. A new growing method for simplex-based endmember extraction algorithm\[J\]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2804-2819.
[7] LUO W F, ZHONG L, ZHANG B. Null space spectral projection algorithm for hyperspectral image endmember extraction [J]. Journal of Infrared Milim Waves, 2010, 29(4): 307-311.
[8] DURAN O, PETROU M. Robust endmember extraction in the presence of anomalies [C]∥ IEEE International Geoscience and Remote Sensing Symposium. Cape Town:IEEE,2009, 4: 89-92.
[9] MEI S H, HE M Y, ZHANG Y F, et al. Improving spatial-spectral endmember extraction in the presence of anomalous ground objects [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4210-4222.
[10] MARTIN G, PLAZA A. Region-based spatial preprocessing for endmember extraction and spectral unmixing [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 745-749.
[11] PLAZA A, MARTINEZ P, PEREZ R,et al. Spatial/spectral endmember extraction by multidimensional morphological operations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 2025-2041.
[12] ROGGE D M, RIVARD B, ZHANG J, et al. Integration of spatial-spectral information for the improved extraction of endmembers [J]. Remote Sensing of Environment, 2007, 110(3): 287-303.
[13] MEI S H, HE M Y, WANG Z Y, et al. Spatial purity based endmember extraction for spectral mixture analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3434-3445.
[14] ZORTEA M, PLAZA A. Spatial preprocessing for endmember extraction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2679-2693.
[15] KESHAVA N. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1552-1564.
[16] DIAS J M B, NASCIMENTO J M P. Hyperspectral subspace identification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2435-2445.
[17] CHANG C I, DU Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 608-619.
[18] CLARK R N, SWAYZE G A, GALLAGHER A, et al. The U. S. geological survey digital spectral library: Version 1: 02 to 30 microns [R]. Denver:USGS Spectroscopy Lab., 1993: 93592.
[19] GUO Z, WITTMAN T, OSHER S. L1 Unmixing and its application to hyperspectral image enhancement [C]∥ Proceedings of SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imager XV. Orlando:SPIE,2009: 73341M-73341M-9.
[20] LIU X S, XIA W, WANG B, et al. An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 757-772. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|