Please wait a minute...
J4  2013, Vol. 47 Issue (7): 1293-1298    DOI: 10.3785/j.issn.1008-973X.2013.07.024
机械与能源工程     
液黏调速离合器油槽结构参数优化设计
崔红伟1,潘鑫2,姚寿文1,闫清东1
1.北京理工大学 机械与车辆学院,北京 100081;2.中国机械工业联合会,北京 100823
Optimization design of oil grooves parameters in hydro-viscous drive
 CUI Hong-wei1, PAN Xin2, YAO Shou-wen1, YAN Qing-dong1
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. China Machinery Industry Federation, Beijing 100823, China   
 全文: PDF  HTML
摘要:

为了减小液黏调速离合器的带排转矩,降低摩擦副的空载功率损失,以双圆弧油槽摩擦副为研究对象,建立基于计算流体动力学流场数值分析、实验设计方法、响应曲面法及数值优化算法为一体的液黏调速离合器摩擦副集成优化设计平台.分析液黏调速离合器摩擦副油槽参数对带排转矩的影响,对结构参数进行优化设计.结果表明:随着油槽宽度和油槽深度的增大,液黏调速离合器转矩均呈现下降的趋势,但是随着油槽数目的增多,液黏调速离合器转矩呈现单调上升的趋势.优化后,减小了液黏调速离合器的带排转矩,提高了发动机的实际输出功率.

Abstract:

The double arc oil grooves friction pairs in HVD was analyzed in order to reduce the drag torque of hydro-viscous drive (HVD) and decrease the no-load power loss of friction pairs. The iSIGHT integrated optimization design platform of friction pairs in HVD was built based on the computational fluid dynamics flow numerical simulation, the design of experiment (DOE), the response surface methodology (RSM) and the numerical optimization algorithm. The influencing and sensitivity analysis of frictional pairs oil grooves parameters on drag torque was analyzed. The grooves structure parameters were optimized. Results indicate that the drag torque is monotonously decreased with the increasing of the width and depth of oil grooves, and the drag torque is monotonously increased with the increasing of the number of oil grooves. The optimized friction pairs can reduce the drag torque of HVD by increasing the width and depth of oil grooves and reducing the numbers of oil grooves, thus improve the power output of engine.

出版日期: 2013-07-01
:  TH 137.33  
基金资助:

国家自然科学基金资助项目(51275039).

通讯作者: 闫清东,男,教授,博导.     E-mail: yanqd@bit.edu.cn
作者简介: 崔红伟(1986-),男,博士生,从事液黏传动技术的研究. E-mail:tcyr@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

崔红伟,潘鑫,姚寿文,闫清东. 液黏调速离合器油槽结构参数优化设计[J]. J4, 2013, 47(7): 1293-1298.

CUI Hong-wei, PAN Xin, YAO Shou-wen, YAN Qing-dong. Optimization design of oil grooves parameters in hydro-viscous drive. J4, 2013, 47(7): 1293-1298.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.07.024        http://www.zjujournals.com/eng/CN/Y2013/V47/I7/1293

[1] 闫清东,张连第,赵毓芹. 坦克构造与设计[M]. 北京: 北京理工大学出版社, 2007: 211-232.
[2] 魏宸官,赵家象. 液黏黏性传动技术[M]. 北京: 国防工业出版社, 1996: 88-89.
[3] 谢方伟. 温度场及变形界面对液黏传动特性影响规律的研究[D]. 徐州: 中国矿业大学, 2010.
XIE Fang-wei. Influence law of temperature field and deformed interface on hydro-viscous drive characteristics [D]. Xuzhou:China University of Mining and Technology, 2010.
[4] CAI Du-jing, WEI Chen-guan. A study on the dynamic performance of hydroviscous drives [J]. Journal of Beijing Institute of Technology, 1992, 1 (2): 111-121.
[5] HUANG Xiao-guang, WEI Chen-guan. Stability of oil film and output speed of hydroviscous drive affected by the pressure of control oil [J]. Journal of Beijing Institute of Technology, 2001, 10 (3): 266-271.
[6] XIE Fang-wei, HOU You-fu. Oil film hydrodynamic load capacity of hydro-viscous drive with variable viscosity [J]. Industrial Lubrication and Tribology, 2011, 63 (3): 210-215.
[7] HUANG Jia-hai, QIU Min-xiu, LIAO Ling-ling. Numerical simulation of flow field between frictional pairs in hydroviscous drive surface [J]. Chinese Journal of Mechanical Egineering, 2008, 21 (3): 72-75.
[8] 洪跃. 液体黏性调速离合器工作机理研究模糊控制试制[D]. 上海: 上海大学, 2004.
HONG Yue. Study behavior of speeding wet clutch and fuzzy controller [D]. Shanghai: Shanghai University, 2004.
[9] 陈宁. 液体黏性传动(HVD)技术的研究[D]. 杭州: 浙江大学, 2003.
CHEN Ning. Theoretical and application researches on hydroviscous drive [D]. Hangzhou: Zhejiang University, 2003.
[10] RAZZAQUE M M, KATO T. Effcets of groove orientation on hydrodynamic behavior of wet clutch coolant films [J]. ASME Journal of Tribology, 1999, 121: 56-61.
[11] APHALE C R, CHO J. Modeling and parametric study of torque in open clutch plates [J]. ASME Journal of Tribolngy, 2006, 128: 422-430.
[12] 孟庆睿. 液体黏性传动调速起动及其控制技术研究[D]. 徐州: 中国矿业大学, 2008.
MENG Qing-rui. Study on hydro-viscous drive speed regulating start and control technology [D]. Xuzhou: China University of Mining and Technology, 2008.
[13] 陈智. 湿式离合器带排转矩研究[D]. 北京: 北京理工大学, 2009.
CHEN Zhi. Study on the drag torque for wet clutch [D]. Beijing: Beijing Institute of Technology, 2009.
[14] 范庆明, 曹岩, 汪伟. 基于iSIGHT 平台翼型气动优化CAD/CFD集成技术研究[J]. 机械设计与制造, 2011(8): 70-72.
FAN Qing-ming, CAO Yan, WANG Wei. Research on aerodynamic optimal CAD/CFD integration of airfoil type based on iSIGHT [J]. Machinery Design and Manufacture, 2011(8): 70-72.
[15] 殷明, 毕小平, 周国印. 基于CFD 与近似模型的坦克百叶窗优化方法[J]. 装甲兵工程学院学报, 2011, 25(5): 25-28.
YIN Ming, BI Xiao-ping, ZHOU Guo-yin. Optimization method for shutter of tank based on CFD and approximate model [J]. Journal of Academy of Armored Force Engineering, 2011, 25 (5): 25-28.

No related articles found!