Please wait a minute...
J4  2013, Vol. 47 Issue (2): 300-307    DOI: 10.3785/j.issn.1008-973X.2013.02.017
能源工程     
流体谐振型时均流诱导声振荡二维数值模拟
麻剑锋1, 刘凯凯1, 徐雅2, 沈新荣1,孙大明2
1. 浙江大学 航空航天学院,浙江 杭州 310027; 2. 浙江大学 能源工程学系,浙江 杭州 310027
CFD simulation of fluid-resonant acoustic oscillation induced
by mean flow
MA Jian-feng1, LIU Kai-kai1, XU Ya2, SHEN Xin-rong 1, SUN Da-ming2
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China;
2. Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对时均流通过十字型深腔结构时产生的“流体谐振型”声振荡现象,采用大涡模拟方法进行数值模拟研究.发现动态Smagorinsky-Lilly模型和壁面自适应局部涡黏模型均能较好描述振荡频率和压力振幅随时均流速的变化规律,但后者对雷诺应力预测不足.计算结果表明,在支管内会形成典型的驻波声场,并随着流速的变化表现出不同的水力模态和声学模态特征.在此基础上,揭示流体谐振型时均流诱导声振荡的发生机理:驻波声场影响涡结构的脱落以及运动轨迹,而涡结构在运动过程中向谐振腔内的声场输出能量,完成两者的耦合作用.

Abstract:

To study the fluid-resonant acoustic oscillation phenomenon induced by the mean flow in a cross-junction deep cavity, the Large-Eddy Simulation (LES) is applied. The result indicates that the dynamic Smagorinsky-Lilly model and the wall-adapted local eddy-viscosity model both can predict the changing rule of oscillation frequency and pressure amplitude. But the latter gives smaller Reynolds stress. It is shown that a standing wave acoustic field forms in the branch tube, and the hydrodynamic mode and acoustic mode change with the mean flow velocity. On this basis, the mechanism of the fluid-resonant oscillation induced by the mean flow is revealed, showing that vortex shedding at the upstream edge of cavity and vortex movement locus are significantly influenced by the acoustic field. On the other hand, vortex structures transfer energy into the acoustic field as they move along the opening of the cavity, thus accomplishing the coupling between the mean flow and the acoustic field.

出版日期: 2013-02-01
:  TK 8  
基金资助:

国家自然科学基金资助项目(50806064); 浙江省留学人员科技活动择优资助项目(20100129).

通讯作者: 孙大明, 男, 副教授, 博导.     E-mail: sundaming@zju.edu.cn
作者简介: 麻剑锋(1980—),男,助理研究员,主要从事数值模拟研究.E-mail: mec_zbzq@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

麻剑锋, 刘凯凯, 徐雅, 沈新荣, 孙大明. 流体谐振型时均流诱导声振荡二维数值模拟[J]. J4, 2013, 47(2): 300-307.

MA Jian-feng, LIU Kai-kai, XU Ya, SHEN Xin-rong, SUN Da-ming. CFD simulation of fluid-resonant acoustic oscillation induced
by mean flow. J4, 2013, 47(2): 300-307.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.02.017        http://www.zjujournals.com/eng/CN/Y2013/V47/I2/300

[1] ROCKWELL D, NAUDASCHER E. Review self-sustaining oscillations of flow past cavities [J]. Journal of Fluids Engineering, 1978, 100(2): 152-165.
[2] BILANIN A J, COVERT E E. Estimation of possible excitation frequencies for shallow rectangular cavities [J]. AIAA Journal, 1973, 11: 347-351.
[3] MCCANLESS J G F, BOONE J R. Noise reduction in transonic wind tunnels [J]. The Journal of the Acoustical Society of America, 1974, 56(5): 1501-1510.
[4] BRUGGEMAN J C, HIRSCHBERG A, VAN DONGEN M E H, et al. Self-sustained aero-acoustic pulsations in gas transport systems: Experimental study of the influence of closed side branches [J]. Journal of Sound and Vibration, 1991, 150(3): 371-393.
[5] SLATON W V, ZEEGERS J C H. An aeroacoustically driven thermoacoustic heat pump [J]. The Journal of the Acoustical Society of America, 2005, 117(6): 3628-3635.
[6] SLATON W V, ZEEGERS J C H. Acoustic power measurements of a damped aeroacoustically driven resonator [J]. The Journal of the Acoustical Society of America, 2005, 118(1): 83-91.
[7] 孙大明,邱利民,甘智华,等.风能驱动的热声制冷机:中国,CN101256040B [P]. 2010-12-29.
SUN Da-ming, QIU Li-ming, GAN Zhihua, et al. Wind power driven thermoacoustic cooler: China, CN101256040B [P]. 2010-12-29.
[8] 余炎,孙大明,徐雅,等.时均流驱动热声制冷研究进展[J].低温与超导,2010, 38(7): 18.
YU Yan, SUN Daming, XU Ya, et al. Advancement of mean flowinduced thermoacoustic refrigeration [J] Cryogenics and Superconductivity.2010, 38(7): 18.
[9] ZIADA S. A flow visualization study of flow-acoustic coupling at the mouth of a resonant sidebranch [J]. Journal of Fluids and Structures, 1994, 8(4): 391-416.
[10] KRIESELS P C, PETERS M C A M, HIRSCHBERG A, et al. High amplitude vortex-induced pulsations in a gas transport system [J]. Journal of Sound and Vibration, 1995, 184(2): 343-368.
[11] DEQUAND S, HULSHOFF S J, HIRSCHBERG A. Self-sustained oscillations in a closed side branch system [J]. Journal of Sound and Vibration, 2003, 265(2): 359-386.
[12] GRAF H R, ZIADA S. Excitation source of a sidebranch shear layer [J]. Journal of Sound and Vibration, 2010, 329(14): 2825-2842.
[13] DOUGHERTY N S, HOLT J B, NESMAN T E, et al. Time-accurate navierstokes computations of selfexcited twodimensional unsteady cavity flows [C]∥ 28th Aerospace Sciences Meeting. Reno: AIAA, 1990: 18.
[14] HARDIN J C, POPE D S. Sound generation by flow over a twodimensional cavity [J]. AIAA Journal, 1995, 33: 407-412.
[15] WANG Z K, DJAMBAZOV G, LAI CH, et al. Numerical simulation of flow-induced cavity noise in selfsustained oscillations [J]. Computing and Visualization in Science, 2007, 10(3): 123-134.
[16] ROWLEY C W, COLONIUS T, BASU A J. On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities [J]. Journal of Fluid Mechanics, 2002, 455: 315-346.
[17] LARCHEVEQUE L, SAGAUT P, MARY I, et al. Largeeddy simulation of a compressible flow past a deep cavity [J]. Physics of Fluids, 2003, 15(1): 193-210.
[18] RIZZETTA D P, VISBAL M R. Large-eddy simulation of supersonic cavity flowfields including flow control [J]. AIAA Journal, 2003, 41(8): 1452-1462.
[19] THORNBER B, DRIKAKIS D. Implicit large-eddy simulation of a deep cavity using highresolution methods [J]. AIAA Journal, 2008, 46(10): 2634-2645.
[20] YU Y, SUN D, WU K, et al. Cfd study on mean flow engine for wind power exploitation [J]. Energy Conversion and Management, 2011, 52(6): 2355-2359.
[21] FAVRE A. Equations des gaz turbulents compressibles [J]. Journal de mecanique, 1965, 4: 361-421.
[22] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid-scale eddy viscosity model [J]. Physics of Fluids, 1991, 3(7): 1760-1765.
[23] LILLY D K. A proposed modification of the germano subgridscale closure method [J]. Physics of Fluids, 1992, 4(3): 633-635.
[24] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200.
[25] VREMAN B, GEURTS B, KUERTEN H. A priori tests of large eddy simulation of the compressible plane mixing layer [J]. Journal of Engineering Mathematics, 1995, 29(4): 299-327.
[26] VREMAN B. Direct and large-eddy simulation of the compressible turbulent mixing layer [D]. Netherlands: University of Twente, 1995.
[27] EIDSON T M. Numerical simulation of the turbulent rayleighbénard problem using subgrid modelling [J]. Journal of Fluid Mechanics, 1985, 158: 245-268.
[28] GHOSAL S, LUND T S, MOIN P, et al. A dynamic localization model for large-eddy simulation of turbulent flows [J]. Journal of Fluid Mechanics, 1995, 286: 229255.
[29] SMAGORINSKY J. General circulation experiments with the primitive equations [J]. Monthly Weather Review, 1963, 91: 99.
[30] HOWE M S. Theory of vortex sound [M]. New York: Cambridge University Press, 2003.

[1] 倪益华, 宋芳芳, 过海. 风机叶片设计二次开发与气动性能仿真[J]. J4, 2012, 46(2): 315-320.