Please wait a minute...
J4  2012, Vol. 46 Issue (5): 899-904    DOI: 10.3785/j.issn.1008-973X.2012.05.020
徐英1,2, 洪治1
1. 中国计量学院 太赫兹技术与应用研究所, 浙江 杭州 310018; 2. 浙江大学 光及电磁波研究中心, 浙江 杭州 310058
Monte Carlo simulation of the effect of bias electric field on
intensity of THz radiation
XU Ying1, 2, HONG Zhi1
1. Center for Terahertz Research, China Jiliang University, Hangzhou 310018, China;
2. Center for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML



To study the effect of bias electric field on the intensity of continuous-wave (CW) terahertz (THz) radiation from the microscopic view, ensemble Monte Carlo method was used to simulate the carriers transport processes under bias electric field. The simulation results show that, due to the effects of space charge screening and scattering, the intensity of CW THz radiation firstly increases as the bias electric field increases, and then saturates finally after reaching peak value. Although the possibility of carrier scattering drops as temperature reduces, the initial energy of photoexcited carrier decreases, so the power of CW THz radiation is lower at low temperature than at normal temperature when the bias electric field is low, but becomes higher when the bias electric field is above a certain threshold.

出版日期: 2012-05-01
:  O 431.1  


通讯作者: 洪治, 男, 研究员.     E-mail:
作者简介: 徐英(1982-), 女, 博士生, 从事连续太赫兹产生及应用方向研究. E-mail:
E-mail Alert


徐英, 洪治. 偏置电场对THz辐射强度影响的蒙特卡罗模拟[J]. J4, 2012, 46(5): 899-904.

XU Ying, HONG Zhi. Monte Carlo simulation of the effect of bias electric field on
intensity of THz radiation. J4, 2012, 46(5): 899-904.


[1] BAKOPOULOS P, KARANASIOU I, PLEROS N, et al. Avramopoulos: A tunable continuous wave (CW) and shortpulse optical source for THz brain imaging applications [J]. Measurement Science & Technology, 2009, 20(10): 104001.
[2] SHIBUYA K, TANI M, HANGYO M, et al. Compact and inexpensive continuouswave subterahertz imaging system with a fibercoupled multimode laser diode [J]. Applied Physics Letters, 2007, 90(16): 161127.
[3] WILK R, BREITFELD F, MIKULICS M, et al. Continuous wave terahertz spectrometer as a noncontact thickness measuring device [J]. Applied Optics, 2008, 47(16): 3023-3026.
[4] VERGHESE S, MCINTOSH K A, BROWN E R. Highly tunable fibercoupled photomixers with coherent terahertz output power [J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1301-1309.
[5] BROWN E R, MCINTOSH K A, SMITH F W, et al. Milliwatt output levels and superquadratic bias dependence in a lowtemperaturegrown GaAs photomixer [J]. Applied Physics Letters, 1994, 64(24): 3311-3313.
[6] MICHAEL E A, VOWINKEL B, SCHIEDER R, et al. Largearea travelingwave photonic mixers for increased continuous terahertz power [J]. Applied Physics Letters, 2005, 86(11): 111-120.
[7] VERGHESE S, MCINTOSH K A, BROWN E R. Optical and terahertz power limits in the lowtemperaturegrown GaAs photomixers [J]. Applied Physics Letters, 1997, 71(19): 2743-2745.
[8] VIEWEG N, MIKULICS M, SCHELLER M, et al. Impact of the contact metallization on the performance of photoconductive THz antennas [J]. Optics Express, 2008, 16(24): 19695-19705.
[9] SAEEDKIA D, MANSOUR R R, SAFAVINAEINI S. The interaction of laser and photoconductor in a continuouswave terahertz photomixer [J]. IEEE Journal of Quantum Electronics, 2005, 41(9): 1188-1196.
[10] BROWN E R. THz generation by photomixing in ultrafast photoconductors [J]. International Journal of High Speed Electronics and Systems, 2003, 13(2): 497-594.
[11] 叶良修. 小尺寸半导体器件的MonteCarlo模拟 [M]. 北京: 科学出版社, 1997.
[12] VARANI L, PALERMO C, MILLITHALER J F, et al. Numerical modeling of terahertz electronic devices [J]. Journal of Computational Electronics, 2006, 5(2): 71-77.
[13] LIU D F, LIN Y X, MA C H. Influence of electronelectron scattering on carrier distributions in optically pumped terahertz laser structures under short pulse excitation [J]. Semiconductor Science and Technology, 2009, 24(4): 045019.
[14] LI H, CAO J C, LU J T, et al. Monte Carlo simulation of extraction barrier width effects on terahertz quantum cascade lasers [J]. Applied Physics Letters, 2008, 92(22): 221105.
[15] 贾婉丽, 施卫, 屈光辉,等. GaAs 光电导天线辐射太赫兹波功率的计算[J]. 物理学报, 2008, 57(9):5425-5428.
JIA Wanli, SHI Wei, QU Guanghui,et al. The calculation of terahertz wave power radiated GaAs photoconductive antenna \
[J\]. Acta Physica Sinica,2008,57(9):5425-5428.
[16] DARROW J T, ZHANG X C, MORSE J D. Saturation properties of largeaperture photoconducting antennas [J]. IEEE Journal of Quantum Electronics, 1992, 28(6): 1607-1618.
[17] NEILA G R, CARRB G L, GUBELI III J F, et al. Production of high power femtosecond terahertz radiation [J]. Nuclear Instruments and Methods in Physics Research A, 2003, 507: 537-540.
[18] BLAKEMORE J S. Semiconducting and other major properties of galliumarsenide [J]. Journal of Applied Physics, 1982, 53(10): R123-R181.

No related articles found!