Please wait a minute...
J4  2011, Vol. 45 Issue (5): 923-927    DOI: 10.3785/j.issn.1008-973X.2011.05.025
化学工程、材料工程     
中空Pd/C催化剂的合成及其对甲酸氧化电催化性能
马琳1, 2,肖玉凤2,赵杰2,陈卫祥2
1.湛江师范学院 化学科学与技术学院,广东 湛江 524048;2. 浙江大学 化学系,浙江 杭州 310027
Synthesis and Electrocatalytic Performances for Formic Acid
Electrooxidation of Hollow Pd/C catalyst
MA Lin1, 2, XIAO Yu-feng2, ZHAO Jie2, CHEN Wei-xiang2,*
1. Chemistry Science and Technology School, Zhanjiang Normal University , Zhanjiang 524048, China;
2. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了提高Pd/C催化剂对甲酸电化学氧化的电催化性能和降低催化剂的成本,以XC-72碳为载体,通过金属置换反应制备中空结构的Pd/C催化剂,并用X-射线衍射(XRD),透射电镜(TEM)和X-射线电子散射能谱(EDX)对催化剂微观形貌和结构进行表征.结果显示中空Pd纳米粒子的平均直径为27.3 nm, 电化学活性比表面积为116 m2/g,远远高于用硼氢化钾还原制备的实心Pd/C催化剂的.中空的Pd/C催化剂对甲酸氧化的电催化活性显著高于实心Pd/C催化剂,同时中空Pd/C催化剂的催化活性稳定性也优于实心Pd/C催化剂.

Abstract:

In order to improved the electrocatalytic performances of Pd/C catalysts for formic acid oxidation and low the catalyst cost, hollow Pd catalyst supported on carbon XC-72 was prepared by a metal replacement reaction at room temperature. The catalysts were characterized by TEM, XRD and EDX. The average diameter of hollow Pd nanospheres was 27.3 nm and the electrochemical active surface area of hollow Pd nanospheres is 116 m2/g, which is much higher than that of solid Pd/C catalyst prepared by employing KBH4 as reducing agent. Electrochemical tests show that the hollow Pd/C catalyst displays much higher electrocatalytic activity and the better stability for formic acid oxidation than the solid Pd/C electrocatalyst.

出版日期: 2011-11-24
:  TM 911.4  
基金资助:

浙江省自然科学基金资助项目(Y4100119);浙江省科技厅公益性资助项目(2011C31G2010027);国家重点基础研究发展计划“973”资助项目(2010CB635116);广东省自然科学基金博士科研启动项目(10452404801004521).

通讯作者: 陈卫祥, 男, 教授, 博导.     E-mail: weixiangchen@zju.edu.cn
作者简介: 马琳(1975-), 男, 河南新乡人, 博士, 从事无机纳米功能纳米材料研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

马琳,肖玉凤,赵杰,陈卫祥. 中空Pd/C催化剂的合成及其对甲酸氧化电催化性能[J]. J4, 2011, 45(5): 923-927.

MA Lin, XIAO Yu-feng, ZHAO Jie, CHEN Wei-xiang. Synthesis and Electrocatalytic Performances for Formic Acid
Electrooxidation of Hollow Pd/C catalyst. J4, 2011, 45(5): 923-927.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.05.025        https://www.zjujournals.com/eng/CN/Y2011/V45/I5/923

[1] ARICO A S, SRINIVASAN S, ANTONUCCI V. From fundamental sspects to technology development [J]. Fuel Cell, 2001, 1(2): 133-161.
[2] ZHOU W J, ZHOU Z H, SONG S Q, et al. Pt based anode catalysts for direct ethanol fuel cells [J]. Applied Catalysts, 2003, 46(2): 273-285.
[3] RICE C, HA S, MASEL R I, et al. Direct formic acid fuel cells [J]. Journal of Power Sources, 2002, 111(1): 83-89.
[4] RICE C, HA S, MASEL RI, et al. Catalysts for direct formic acid fuel cells [J]. Journal of Power Sources, 2003, 115(2): 229-235.
[5] RHEE Y W, HA S Y, MASEL R I. Crossover of formic acid through Nafion membranes [J]. Journal of Power Sources, 2003,117(1/2): 35-38.
[6] ZHU Y M, HA S Y, MASEL R I, High power density direct formic acid fuel cells [J]. Journal of Power Sources, 2004, 130(1/2): 8-14.
[7] JIANG J, KUCERNAK A, Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid \
[J\]. Journal of Electroanalyst Chemistry, 2002, 520(12): 64-70.
[8] PARK S, XIE Y, WEAVER M J. Electrocatalytic pathways on carbonsupported platinum nanoparticles: comparison of particlesizedependent rates of methanol, formic acid, and formaldehyde electrooxidation [J]. Langmuir, 2002, 18(15): 5792-5798.
[9] LOVIC J D, TRIPKOVIC A V, GOJKOVIC S L, et al. Study of formic acid oxidation on carbonsupported platinum electrocatalyst [J]. Journal of Electroanalyst Chemistry, 2005, 581(2): 294-302.
[10] CAPON A, PARSONS R. The oxidation of formic acid at noble metal electrodes part 4. platinum + palladium alloys [J]. Journal of Electroanalyst Chemistry, 1975, 65(1): 285-305.
[11] HA S, LARSEN R, MASEL R I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells [J]. Journal of Power Sources, 2005, 144(1): 28-34.
[12] HA S, ZHU Y, MASEL R I. Direct formic acid fuel cells with 600 mA cm-2 at 04 V and 22 °C [J]. Fuel Cells, 2004, 4(4): 337-343.
[13] LI H Q,SUN G Q,JIANG Q, et al. Preparation and characterization of Pd/C catalyst obtained in NH3mediated polyol process [J]. Journal of Power Sources, 2007, 172(2): 641-649.
[14] SUN Y G, XIA Y N. Shapecontrolled synthesis of gold and silver nanoparticles [J]. Science, 2002, 298(5601): 2176-2179.
[15] ZHAO J, CHEN W X, ZHENG Y F, et al. Novel carbon supported hollow Pt nanospheres for methanol electrooxidation [J]. Journal of Power Sources, 2006, 162(1): 168-172.
[16] LIU Z L, LEE J Y, CHEN W X, et al. Physical and electrochemical characterizations of microwavesssisted polyol preparation of carbonsupported PtRu nanoparticles [J]. Langmuir, 2004, 20(1): 181-187.
[17] GE J J, XING W, XUE X Z, et al. Controllable synthesis of Pd nanocatalysts for direct formic acid fuel cell (DFAFC) application: from Pd hollow nanospheres to Pd nanoparticles [J]. Journal of Physics Chemistry C, 2007, 111(46): 17305-17310.
[18] ZHU Y, KANG YY, ZOU ZQ, et al. A facile preparation of carbonsupported Pd nanoparticles for electrocatalytic oxidation of formic acid [J]. Electrochemistry Communication, 2008, 10(5): 802-805.
[19] MROZEK M F, LUO H, WEAVER M J. Formic acid electrooxidation on platinumgroup metals: is adsorbed carbon monoxide solely a catalytic poison? [J]. Langmuir, 2000, 16(22): 8463-8469.
[20] LIU Z L, LEE J Y, HAN M, et al. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions [J]. Journal of Materials Chemistry, 2002, 12(8): 2453-2458.

[1] 马琳, 李辉, 常焜, 李赫, 陈卫祥. 水热合成纳米片状SnS2及其电化学贮放锂性能[J]. J4, 2011, 45(2): 354-357.