Please wait a minute...
J4  2010, Vol. 44 Issue (7): 1255-1259    DOI: 10.3785/j.issn.1008-973X.2010.07.004
自动化技术     
基于特征空间降维的溶剂脱水分离过程监控
杜文莉, 王坤, 钱锋
华东理工大学 化工过程先进控制和优化技术教育部重点实验室,上海 200237
Feature space dimensionreduction based process monitoring of solvent dehydration separation process
杜文莉, 王坤, 钱锋
Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237,China
 全文: PDF  HTML
摘要:

针对传统化工过程中检测变量具有的非线性和非高斯性等特点,提出将改进的核主元分析(KPCA)和支持向量数据描述(SVDD)相结合的化工过程故障诊断方法.根据Mexican hat小波在提取非线性非平稳信号细微特征方面的优势,将该小波函数引入到KPCA中以增强核函数的非线性映射和抗噪能力.在映射后的特征空间中进行均值聚类分析,选择每个聚类中展现特征中心的数据,使运算复杂度明显降低,提高了监控实时性.采用SVDD描述经过聚类降维后的特征空间分布,提出新的监控指标描述过程的非高斯特性.将该方法应用在一个实际的溶剂脱水化工精馏过程中,仿真结果验证了该方法能够及时有效地检测系统产生的故障.

Abstract:

The measurement variables of chemical process usually show the characteristic of nonlinear and nonGaussian behaviors. A novel modeling method was proposed by integrating the improved kernel principal component analysis (KPCA) with support vector data description (SVDD). The Mexican hat wavelet function was introduced to construct the kernel function by utilizing the advantage of extracting the subtle feature of nonlinear nonstationary signal. The nonlinear mapping and antinoise capability of kernel function was enhanced. Then the cluster analysis was used in the kernel feature space. The data that represented the characteristic center in every cluster were chosen, which can decrease the computational complexity and improve the results of realtime monitor. Furthermore, the SVDD was adopted to describe the feature space with dimensionreduction, and a new monitor index was constructed by SVDD to describe the nonGaussian information. The method was applied to a solvent dehydration distillation process. Simulation results demonstrate that the method can detect the fault promptly and effectively.

出版日期: 2010-07-01
:  TP 277  
基金资助:

国家自然科学基金资助项目(60625302、20876044);国家“973”重点基础研究发展规划资助项目(2009CB320603);上海市重点学科建设资助项目(B504);上海市青年科技启明星计划资助项目(08QA14021).

通讯作者: 钱锋,男,教授.     E-mail: fqian@ecust.edu.cn
作者简介: 杜文莉(1974—),女,山东淄博人,副研究员,从事过程控制的研究.E-mail:wldu@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杜文莉, 王坤, 钱锋. 基于特征空间降维的溶剂脱水分离过程监控[J]. J4, 2010, 44(7): 1255-1259.

DU Wen-Chi, WANG Kun, JIAN Feng. Feature space dimensionreduction based process monitoring of solvent dehydration separation process. J4, 2010, 44(7): 1255-1259.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.07.004        http://www.zjujournals.com/eng/CN/Y2010/V44/I7/1255

[1] QIN S J. Statistical process monitoring basics and beyond [J]. Journal of Chemometrics, 2003, 17(8): 480502.

[2] MISRA M, YUE H H, QIN S J, et al. Multivariate process monitoring and fault diagnosis by multiscale PCA [J]. Computers and Chemical Engineering, 2002, 26(9): 12811239.

[3] SCHOLKOPF B, SMOLA A J, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5): 12991319.

[4] LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science, 2004, 59 (1): 223234.

[5] CHOI S W, LEE C, LEE J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA [J]. Chemometrics and Intelligent Laboratory Systems, 2005, 28(1): 5567.

[6] JOHN S, TAYLOR N C. Kernel methods for pattern analysis [M]. Cambridge: Cambridge University Press, 2004: 3785.

[7] GANEY J L, BLOCK W M, JENNESS J S, et al. Mexican spotted owl home range and habitat use in pineoak forest [J]. Forest Science, 1999, 45(1): 127135.

[8] ZHANG L, ZHOU W, JIAO L. Wavelet support vector machine [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2004, 34(1): 3439.

[9] CHIANG L H, RUSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems [J]. Technometrics, 2002, 44(2): 197198.

[10] KRZANOWSKI W J. Betweengroups comparison of principal components [J]. American Statistical Association, 1979, 74(36): 703707.


[11] ZHANG Y W, QIN J S. Improved nonlinear fault detection technique and statistical analysis [J]. Wiley InterScience, 2008, 54(12): 32073220.

[12] 刘育明,梁军,毛勇,等.基于支持向量机的MSPC方法及其应用[J].浙江大学学报:工学版,2006,40(10): 17211724.

LIU Yuming, LIANG Jun, MAO Yong, et al. SVMbased multivariate statistical process control method and its application [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(10): 17211724.

[13] TAX D M J, DUIN R P W. Support vector domain description [J]. Machine Learning, 2004, 54(1): 4566.

[14] TAX D M J, DUIN R P W. Support vector domain description [J]. Pattern Recognition Letters,1999,20(11/13): 11911199.

[1] 段斌, 梁军, 费正顺, 杨敏, 胡斌. 基于GA-ANN的非线性半参数建模方法[J]. J4, 2011, 45(6): 977-983.
[2] 徐贵斌, 周东华. 基于在线学习神经网络的状态依赖型故障预测[J]. J4, 2010, 44(7): 1251-1254.
[3] 林勇, 周晓军, 杨先勇, 等. 基于双谱识别和人工免疫网络的智能故障检测[J]. J4, 2009, 43(10): 1777-1782.