Please wait a minute...
J4  2010, Vol. 44 Issue (4): 692-695    DOI: 10.3785/j.issn.1008973X.2010.04.012
电子、通信与自动控制技术     
自适应随机共振二进制基带信号处理
于淼1,2, 李式巨1, 杨志敏1
1.浙江大学 信息与电子工程学系, 浙江 杭州 310027; 2.南京电讯技术研究所, 江苏 南京 210007
Binary base-band signal processing using adaptive stochastic resonance
YU Miao1,2, LI Shiju1, YANG Zhimin1
1. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
2. Nanjing Telecommunication Technology Institute, Nanjing 210007, China
 全文: PDF  HTML
摘要:

在二进制基带数字信号处理系统中引入随机共振作为非线性处理模块,可以有效地提高系统的输出信噪比.从误码率和输入输出互信息角度对随机共振进行研究,提出一种基于互信息的自适应随机共振信号处理方法,增强了二进制基带数字信号处理系统的鲁棒性.系统运行前先使用一很短的训练序列,随机共振模块根据输入输出互信息按照梯度方向自动调整系统参数,经有限步迭代后自动收敛到最佳共振点,并保持此状态对未知信息序列进行处理,使系统输出端误码率达到最低.仿真结果表明,新算法迅速收敛到最大互信息值,与直接判决方法相比具有更大的信噪比增益.

Abstract:

Stochastic resonance was introduced to the binary base-band digital signal processing system to increase the signal to noise ratio. A new method of adaptive stochastic resonance was proposed, which is based on the maximal mutual information criteria. Firstly, a very short binary training sequence is used, the stochastic resonance module calculates the mutual information and tunes the system parameter through the gradient direction. The system converges to the best point after several steps, then the bit error rate of the system reaches the minimum. Secondly, the system is switched to deal with the unknown information sequence. Simulation results indicate that the proposed adaptive stochastic resonance method achieves an improvement of several dBs over the original direct decision method.

出版日期: 2010-05-14
:  TN91  
基金资助:

通信系统信息控制技术国家级重点实验室资助项目

通讯作者: 李式巨,男,教授     E-mail: leesj@cise.zju.edu.cn
作者简介: 于淼(1975—),男,吉林省吉林市人,博士生,从事随机共振和独立分量理论研究.Email:yumiao6656@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

于淼, 李式巨, 杨志敏. 自适应随机共振二进制基带信号处理[J]. J4, 2010, 44(4): 692-695.

XU Miao, LI Shi-Ju, YANG Zhi-Min. Binary base-band signal processing using adaptive stochastic resonance. J4, 2010, 44(4): 692-695.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2010.04.012        http://www.zjujournals.com/eng/CN/Y2010/V44/I4/692

[1] BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance [J]. Physics A, 1981, 14(11): L453L457.
[2] BENZI R, PARISI G, VULPIANI A. Stochastic resonance in climatic change [J]. SIAM Journal on Applied Mathematics, 1983, 43(3): 565578.
[3] MCNAMARA B, WIESENFELD K. Theory of stochastic resonance [J]. Physics Review A, 1989, 39(9): 48544869.
[4] ANISHEHENKO V S, SAFONOVA M A, CHUA L O. Stochastic resonance in the nonautonomous Chuas circuit [J]. Journal of Circuits, Systems and Computers, 1993, 3(2): 553578.
[5] XU Bohou, DUAN Fabing, BAO Ronghao, et al. Stochastic resonance with tuning system parameters: the application of bistable systems in signal processing [J]. Chaos, Solitons & Fractals, 2002, 13(4): 633644.
[6] RISKEN H. The FokkerPlanck equation [M]. New York: Springer, 1983: 6365.
[7] 段法兵.参数调节随机共振在数字信号传输中的应用[D].杭州:浙江大学,2002: 4144.
DUAN Fabing. The application of parametertuning stochastic resonance in digital signal transmission [D]. Hangzhou: Zhejiang University, 2002: 4144.
[8] 樊昌信,张甫翊,徐炳祥,等.通信原理[M].5版.北京:国防工业出版社,2003: 5758.

No related articles found!