[1] LAPIERRE L. Robust diving control of an AUV[J]. Ocean Engineering, 2009, 36(1):92-104.
[2] 徐玉如, 肖坤. 智能海洋机器人技术进展[J]. 自动化学报, 2007, 33(5):518-521 XU Yu-ru, XIAO Kun. Technology development of autonomous ocean vehicle[J]. Acta Automatica Sinica, 2007, 33(5):518-521
[3] 史剑光, 李德骏, 杨灿军, 等. 水下自主机器人接驳碰撞过程分析[J]. 浙江大学学报:工学版, 2015, 49(3):497-504 SHI Jian-guang, LI De-jun, YANG Can-jun, et al. Impact analysis during docking process of autonomous underwater vehicle[J]. Journal of Zhejiang University: Engineering Science, 2015, 49(3):497-504
[4] AGUIAR A, HESPANHA J. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE Tran sactions on Automatic Control, 2007, 52(8):1362-1379.
[5] 魏清平, 王硕, 董翔, 等. 一种仿生水下机器人的设计与动力学分析[J]. 自动化学报, 2013, 39(8):1330-1338 WEI Qing-ping, WANG Suo, DONG Xiang, et al. Design and kinetic analysis of a biomimetic underwater vehicle with two undulating long-fins[J]. Acta Automatica Sinica, 2013, 39(8):1330-1338
[6] LIANG X, WAN L, BLAKE J, et al. Path following of an underactuated AUV based on fuzzy backstepping sliding mode control[J]. International Journal of Advanced Robotic Systems, 2016, 13(122):1-11.
[7] PEYMANI E, FOSSEN T I. Path following of underwater robots using Lagrange multipliers[J]. Robotics and Autonomous Systems, 2015, 67:44-52.
[8] 初亮, 李天骄, 孙成伟. 面向再生制动优化的电动车自适应巡航控制策略[J]. 浙江大学学报:工学版, 2017, 51(8):1596-1602 CHU Liang, LI Tian-jiao, SUN Cheng-wei. Research on adaptive cruise control strategy for electric vehicle based on optimization of regenerative braking[J]. Journal of Zhejiang University:Engineering Science, 2017, 51(8):1596-1602
[9] 唐志国, 李元春, 刘木林. 机械臂协调操作柔性负载鲁棒神经网络控制[J]. 浙江大学学报:工学版, 2010, 44(7):1394-1399 TANG Zhi-guo, LI Yuan-chun, LIU Mu-lin. Robust neural network control of dual-manipulator cooperative system handling flexible payload[J]. Journal of Zhejiang University:Engineering Science, 2010, 44(7):1394-1399
[10] ZHAO J. NN-adaptive predictive control for a class of discrete-time nonlinear systems with input-delay[J]. Neurocomputing, 2016, 173:1832-1838.
[11] 程鹏飞, 吴成富. 单侧机翼损伤飞机的神经网络自适应鲁棒非线性控制[J]. 系统工程与电子技术, 2016, 38(3):607-617 CHENG Peng-fei, WU Cheng-fu. Neural network based robust adaptive nonlinear control for aircraft under one side of wing loss[J]. Systems Engineering and Electronics, 2016, 38(3):607-617
[12] CUI R, YANG C, LI Y, et al. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning[J]. IEEE transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(6):1019-1029.
[13] LIU Y, TONG S. Optimal control-based adaptive NN design for a class of nonlinear discrete-time block-triangular systems[J]. IEEE Transactions on Cybernetics, 2016, 46(11):2670-2680.
[14] QI X. Adaptive coordinated tracking control of multiple autonomous underwater vehicles[J]. Ocean Engineering, 2014, 91:84-90.
[15] ZHANG L, QI X, PANG Y. Adaptive output feedback control based on DRFNN for AUV[J]. Ocean Engineering, 2009, 36(9):716-722.
[16] PARK B. Adaptive formation control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2015, 96:1-7.
[17] 张利军, 齐雪, 赵杰梅, 等. 垂直面欠驱动自治水下机器人定深问题的自适应输出反馈控制[J]. 控制理论与应用, 2012, 29(10):1371-1376 ZHANG Li-jun, QI Xue, ZHAO Jie-mei, et al. Depth-keeping control for autonomous underwater vehicle in vertical plane using adaptive output feedback controller[J]. Control Theory and Applications, 2012, 29(10):1371-1376
[18] SUBUDHI B, MUKHERJEE K, GHOSH S. A static output feedback control design for path following of autonomous underwater vehicle in vertical plane[J]. Ocean Engineering, 2013, 63:72-76.
[19] LI S, WANG X, ZHANG L. Finite-time output feedback tracking control for autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2015, 40(3):727-751.
[20] LIU S, WANG D, POH E. Output feedback control design for station keeping of AUVs under shallow water wave disturbances[J]. International Journal of Robust and Nonlinear Control, 2009, 19(13):1447-1470.
[21] PENG Z, WANG J. Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(4):535-544.
[22] KUMAR R, KUMAR C, SEN D, et al. Discrete time-delay control of an autonomous underwater vehicle:theory and experimental results[J]. Ocean Engineering, 2009, 36(1):74-81.
[23] SANTOS O, ROMERO H, SALAZAR S, et al. Optimized discrete control law for quadrotor stabilization:experimental results[J]. Journal of Intelligent and Robotic Systems, 2016, 84(1-4):1-15.
[24] YU J, SHI P, DONG W, et al. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(3):640-645.
[25] HE W, CHEN Y, YIN Z. Adaptive neural network control of an uncertain robot with full-state constraints[J]. IEEE Transactions on Cybernetics, 2016, 46(3):620-629.
[26] MA J, GE S S, ZHENG Z, et al. Adaptive NN control of a class of nonlinear systems with asymmetric saturation actuators[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7):1532-1538. |