Please wait a minute...
J4  2012, Vol. 46 Issue (4): 734-738    DOI: 10.3785/j.issn.1008-973X.2012.04.023
自动化技术、电信技术     
连续THz波双频偶极天线优化设计
徐英1, 洪治2
1. 浙江大学 光及电磁波研究中心, 浙江 杭州 310058;2. 中国计量学院 太赫兹技术与应用研究所, 浙江 杭州 310018
Optimization design of dual-frequency dipole antenna for
continuous-wave THz radiation
XU Ying1, HONG Zhi2
1. Center for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China;
2. Center for Terahertz Research, China Jiliang University, Hangzhou 310018, China
 全文: PDF  HTML
摘要:

为了提高无线通信应用中THz天线的性能,在微波段双频偶极天线基础上设计适用于THz频段的双频偶极天线.该天线通过结合交叉电极结构来提高天线的激光耦合效率以及所能承受的激光功率,采用双层衬底材料来改善天线的电学辐射特性.仿真结果表明,以反射损耗和辐射阻抗等作为目标对天线的结构参数进行优化,当天线工作谐振频率点分别为0.2和0.65 THz时天线的反射损耗均小于-25 dB,且辐射阻抗达到局部极大值.对天线的结构参数研究表明,改变天线的电极间隙能够使天线工作在需要的高频谐振频率.

Abstract:

A dual-frequency dipole antenna used within THz frequency band was presented based on that used within microwave band in order to improve the performance of THz antenna for wireless communications application. The structures of interdigitated electrode and duallayer substrate were introduced to improve the coupling efficiency of irradiated light, the laser power that the antenna can sustain and the electrical radiation characteristics of the antenna, respectively. The simulation results demonstrate that, the return loss at two resonant frequencies of 0.2 THz and 0.65 THz are both lower than-25 dB through optimizing its structure parameters when adopting return loss and radiation resistance as the objectives. The radiation resistance is also local maximum. The research on its structure parameters also shows that the high working resonant frequency can be achieved by changing the electrode distance.

出版日期: 2012-05-17
:  TN 822.4  
基金资助:

国家自然科学基金资助项目(60576042).

通讯作者: 洪治, 男, 研究员.     E-mail: hongzhi@cjlu.edu.cn
作者简介: 徐英(1982—),女,博士生, 从事连续太赫兹波产生及应用的研究. E-mail: xuying@coer.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐英, 洪治. 连续THz波双频偶极天线优化设计[J]. J4, 2012, 46(4): 734-738.

XU Ying, HONG Zhi. Optimization design of dual-frequency dipole antenna for
continuous-wave THz radiation. J4, 2012, 46(4): 734-738.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.04.023        http://www.zjujournals.com/eng/CN/Y2012/V46/I4/734

[1] 许景周,张希成.太赫兹科学技术和应用[M].北京:北京大学出版社, 2007: 1-6.
[2] 姚建铨,迟楠, 杨鹏飞,等.太赫兹通信技术的研究与展望[J].中国激光, 2009, 36(9): 2213-2233.
YAO Jianquan, CHI Nan, YANG Pengfei, et al. Study and outlook of terahertz communication technology [J]. Chinese Journal of Lasers, 2009, 36(9): 2213-2233.
[3] 朱艳玲,刘琳琳, 张福顺,等.新型共口径双频双圆极化微带天线设计[J]. 微波学报, 2007, 23(6): 40-43.
ZHU Yanlin, LIU Linlin, ZHANG Fushun, et al. Design of novel commonaperture dualband circularlypolarized microstrip antennas [J]. Journal of Microwaves, 2007, 23(6): 40-43.
[4] HE Q Q, WANG B Z, HE J. Wideband and dualband design of a printed dipole antenna [J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7(1): 1-4.
[5] SHARMA A, DWIVEDI V K, SINGH G. THz rectangular microstrip patch antenna on multilayered aubstrate for advance wireless communication systems [C]∥ Progress in Electromagnetics Research Symposium. Beijing: [s.n.], 2009: 627-631.
[6] JHA K R, SINGH G. Dualband rectangular microstrip patch antenna at terahertz frequency for surveillance system [J]. Journal of Computational Electronics, 2010, 9(1): 31-41.
[7] MATSUURA S, ITO H. Generation of CW terahertz radiation with photomixing [J]. Terahertz Optoelectronics, Topics in Applied Physics, 2005, 97: 157-202.
[8] BROWN E R, MCINTOSH K A, NICHOLS K B, et al. Photomixing up to 3.8THz in lowtemperaturegrown GaAs [J]. Applied Physics Letters, 1995, 66(3): 285-287.
[9] MATSUURA S, TANI M, SAKAI K. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas [J]. Applied Physics Letters, 1997, 70(5): 559-561.
[10] GREGORY I S, BAKER C, TRIBE W R, et al. Optimization of photomixers and antennas for continuouswave terahertz emission [J]. IEEE Journal of Quantum Electronics, 2005, 41(5): 717-728.
[11] MENDIS R, SYDLO C, SIGMUND J, et al. Tunable CWTHz system with a logperiodic photoconductive emitter [J]. SolidState Electronics, 2004, 48(10/11): 2041-2045.
[12] DUFFY S M, VERGHESE S, MCINTOSH K A, et al. Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power [J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(6): 1032-1038.
[13] 徐英,陈海滨,洪治.光电导天线辐射阻抗特性模拟分析[J].光子学报, 2010, 39(2): 233-237.
XU Ying, CHEN Haibin, HONG Zhi. Modeling of the radiation impedance characteristics for photoconductive antenna [J]. Acta Photonica Sinica, 2010, 39(2): 233-237.
[14] BROWN E R. THz generation by photomixing in ultrafast photoconductors [J]. International Journal of High Speed Electronics and Systems, 2003, 13(2): 497-594.

No related articles found!