J4  2012, Vol. 46 Issue (12): 2237-2242    DOI: 10.3785/j.issn.1008-973X.2012.12.015
 土木工程

1.山东科技大学 土木建筑学院, 山东 青岛 266590；2.山东省土木工程防灾减灾重点实验室, 山东 青岛 266590；
3.青岛理工大学 环境与市政工程学院,山东 青岛 266033
Determination method for  rock-soil thermal properties
based on system optimization
ZHANG Chang-xing1,2, HU Song-tao 3, LIU Yu-feng1,2, CONG Xiao-chun1,2
1. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, China；
2. Shandong Provincial Key Laboratory for Disaster Prevention and Reduction in Civil Engineering,Qingdao 266590, China；
3. School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao 266033, China
 全文: PDF  HTML

Abstract:

For determining rock-soil thermal properties in the design of ground source heat pump system (GSHPs), this work presented a system model of rock-soil thermal response test (TRT) based on the duct storage system (DST) model of vertical U-pipes ground heat exchanger (GHE). As objective function，the temperature difference quadratic sum of the simulated average water temperature in the GHE from the system model and the testing value from the TRT was calculated. And a simulation-optimization approach was proposed for determining the optimal thermal conductivity and the heat capacity of rock-soil. A calculating sample based on TRT was conducted to validate the simulation-optimization approach. After the optimal result was applied in the system model of rock-soil TRT, three groups of simulated average water temperature based on different GHE models (finite line source model, cylinder source model, DST model) were compared with the test values. The result showed that the temperature difference quadratic sum corresponding to the DST model was minimum, and the maximum relative errors of heat transfer rate of GHE between the simulating values from the system model of rock-soil TRT and the test input values were lower than 3.11%.

 : TU 111

#### 引用本文:

ZHANG Chang-xing, HU Song-tao , LIU Yu-feng, CONG Xiao-chun. Determination method for  rock-soil thermal properties
based on system optimization. J4, 2012, 46(12): 2237-2242.

#### 链接本文:

 ［1］ 中华人民共和国建设部.地源热泵工程技术规范(GB503662005)2009年版［S］.北京:中国建筑工业出版社, 2009. ［2］ PAHUD D, MATTHEY B. Comparison of the thermal performance of double upipe borehole heat exchangers measured in situ ［J］. Energy and Buildings, 2001, 33: 503-507. ［3］ 于明志,彭晓峰,方肇洪,等.基于线热源模型的地下岩土热物性测试方法［J］.太阳能学报,2006, 27(3): 279-283. YU Mingzhi, PENG Xiaofeng, FANG Zhaohong, et al. Line source method for measuring thermal proerties of deep ground［J］. Acta Energiae Solaris Sinica, 2006, 27(3): 279-283. ［4］ 高青,余传辉.地下土壤导热系数简化柱热源模型确定方法［J］.太阳能学报,2007,28(12): 1402-1406. GAO Qing, YU Chuanhui. The simplified cylindrical source model for determining the thermal conductivity underground soil［J］. Acta Energiae Solaris Sinica, 2007, 28(12): 1402-1406. ［5］ 颜亮,王沣浩,余斌.地源热泵岩土热物性现场测试方法评价［J］.暖通空调,2011,42(12): 75-79. YAN Liang, WANG Fenghao, YU Bin. Evaluation on field test methods of ground thermal properties for groundsource heat pump systems［J］. Journal of Heating, Ventilating& AirConditioning, 2011, 42(12): 75-79. ［6］ HELLSTRM G. Ground heat storage: thermal analyses of duct storage systems ［D］. Lund: Lund University, 1991. ［7］ HELLSTRM G, MAZZARELLA L, PAHUD D. Duct ground storage modelTRNSYS 13.1 version［R］. Lund: Department of Mathematical Physics, Lund University, 1996. ［8］ ESKILSON P. Thermal analysis of heat extraction boreholes ［D］. Lund: Lund Institute of Technology, 1987. ［9］ ZENG H Y, DIAO N R, FANG Z H. A finite linesource model for boreholes in geothermal heat exchangers ［J］. Heat TransferAsian Research, 2002, 31(7): 558-567. ［10］ 张长兴,胡松涛,李绪泉.格林函数法在竖直U形地埋管传热计算中的应用［J］.太阳能学报,2010,31(2): 158-162. ZHANG Changxing, HU Songtao, LI Xuquan. Application of green function method in calculation on heat conduction of vertical utubes heat exchanger［J］. Acta Energiae Solaris Sinica, 2010, 31(2): 158-162. ［11］ MICHEL Bernier, MICHAL Kummert, STPHANE Bertagnolio. Development and application of test cases for comparing vertical ground heat exchanger models［C］∥Proceeding of Building Simulation. Beijing：  Tsinghua University Press, 2007: 126-131. ［12］ 胥晓旸.地源热泵的TRNSYS模拟与实验研究［D］.天津：天津大学,2008: 1954. XU Xiaochang. Simulation with TRNSYS and experimental research of ground source heat pump systems［D］. Tianjin: Tianjin University, 2008: 1954. ［13］ 任艳.中埋双U管地源热泵系统运行特性的分析与实验研究［D］.北京：北京工业大学,2010: 41-50. REN Yan. Performance characteristic analysis and experimental study of moderateburied doubleU tube groundsource heat pump system［D］. Beijing: Beijing University of Technology, 2010: 41-50. ［14］ 孙国正. 优化设计及应用［M］.北京:人民交通出版社, 1992: 96-98. ［15］ Lawrence Berkeley National Laboratory (LBNL). GenOpt, Generic Optimization Program［R］. U C Berkeley: Lawrence Berkeley National Laboratory, 2009. ［16］ HASAN Ala, VUOLLE Mika, SIREN Kai. Minimisation of life cycle cost of a detached house using combined simulation and optimization ［J］. Building and Environment, 2008, 43(12): 2022-2034. ［17］ 孙德敏.工程最优化方法及应用［M］.合肥:中国科学技术大学出版社,1997: 136-139.
 [1] 王子阳, 邵卫云, 张仪萍. 考虑土壤分层的地源热泵圆柱面热源模型[J]. J4, 2013, 47(8): 1338-1345. [2] 王子阳, 张仪萍, 战国会, 俞亚南. 有渗流时埋管换热器传热模型[J]. J4, 2012, 46(8): 1450-1456. [3] 战国会, 张仪萍, 徐坚, 俞亚南. 地源热泵群孔长期换热有限长体热源模型[J]. J4, 2011, 45(8): 1411-1415. [4] 战国会, 俞亚南. 地源热泵有限长圆柱面和圆柱体热源模型[J]. J4, 2011, 45(6): 1104-1107. [5] 俞亚南, 徐坚, 冯建江. 粉性土导热系数的室内实验研究[J]. J4, 2010, 44(1): 180-183.