Please wait a minute...
J4  2010, Vol. 44 Issue (4): 665-669    DOI: 10.3785/j.issn.1008-973X.2010.04.007
电子、通信与自动控制技术     
基于粒子群优化算法的有用时钟偏差规划
郑丹丹, 张培勇, 吕冬明
浙江大学 超大规模集成电路研究所,浙江 杭州 310027
Useful clock skew scheduling based on particle swarm optimization
ZHENG Dandan, ZHANG Peiyong, LV Dongming, YAN Xiaolang
Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对超深亚微米集成电路SOC设计中时钟偏差优化设计的难题,提出一种基于粒子群优化(PSO)算法的有用时钟偏差规划方法.在电路中引入有用偏斜,通过惯性权重线性递减的自适应PSO算法对关键路径上时钟输入端的延时进行调整,并采用最差时间违反作为适应函数对有用时钟偏差进行全局搜索寻求最优解,从而减小电路的时钟周期,优化电路的时序性能.与现有的经典图论算法相比,该方法通过优化组合逻辑的延时,可以找到更优解.应用该算法对32位嵌入式CPU进行优化计算,实验结果证明了该方法的正确性和有效性.

Abstract:

 To deal with the difficulties in optimal design for clock skew scheduling of SOC in very deep submicron integrated circuit, a novel useful clock skew scheduling based on particle swarm optimization (PSO) was presented to optimize circuit performance. This technique introduces useful skew in circuits and adopts adaptive PSO with linearly decreasing inertia weight to adjust the clock input delay of critical path. Global search is performed at useful clock skew that using worst negative slack as fitness function to find the optimal solution, consequently reduces the clock period and optimize the circuit performance. Compared with other existing graph based algorithms, the proposed technique can obtain better solution by optimizing the combinational path delays. The application to 32bit embedded CPU show that this algorithm is correct and effective.

出版日期: 2010-05-14
:     
基金资助:

 国家自然科学基金资助项目(60720106003)

通讯作者: 张培勇,男,副教授.     E-mail: zhangpy@vlsi.zju.edu.cn
作者简介: 郑丹丹(1981—),女,浙江余姚人,博士生,从事超深亚微米集成电路SOC设计. Email: zhengdd@vlsi.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郑丹丹, 张培勇, 吕冬明. 基于粒子群优化算法的有用时钟偏差规划[J]. J4, 2010, 44(4): 665-669.

ZHENG Dan-Dan, ZHANG Pei-Yong, LV Dong-Meng. Useful clock skew scheduling based on particle swarm optimization. J4, 2010, 44(4): 665-669.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.04.007        http://www.zjujournals.com/eng/CN/Y2010/V44/I4/665

[1] RABAEY J M, CHANDRAKASAN A, NIKOLIC B. Digital integrated circuits [M]. 2nd ed. New Jersey: PrenticeHall, 2003: 495502,672692.
[2] RESTLE P J, MCNAMARA T G, WEBBER D A, et al. A clock distribution network for microprocessors [J]. IEEE Journal of SolidState Circuits, 2001, 36(5): 792799.
[3] VENKATARAMAN G, JAYAKUMAR N, HU J, et al. Practical techniques to reduce skew and its variations in buffered clock networks [C]∥ Proceedings of 2005 IEEE/ACM International Conference on ComputerAided Design. San Jose: IEEE, 2005: 592596.
[4] WASON V, MURGAI R, WALKER W W. An efficient uncertainty and skewaware methodology for clock tree synthesis [C]∥ Proceedings of the 20th International Conference on VLSI Design, Held Jointly with 6th International Conference on Embedded System. Los Alamitos: IEEE, 2007: 271277.
[5] KOURTEV I S, FRIEDMAN E G. Timing optimization through clock skew scheduling [M]. Norwell: Kluwer, 2000: 9096.
[6] NAWALE V, CHEN T W. Optimal useful clock skew scheduling in the presence of variations using robust ILP formulations [C]∥ Proceedings of 2006 IEEE/ACM International Conference on ComputerAided Design. San Jose: ACM, 2006: 2732.
[7] FISHBURN J P. Clock skew optimization [J]. IEEE Transactions on Computers, 1990, 39(7): 945951.
[8] DEOKAR R B, SAPATNEKAR S S. A graphtheoretic approach to clock skew optimization [C]∥ Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS). London: IEEE, 1994: 407410.
[9] BURNS S M. Performance analysis and optimization of asynchronous circuits [D]. Pasadena: California Institute of Technology, 1991.
[10] RAVINDRAN K, KUEHLMANN A, SENTOVICH E. Multidomain clock skew scheduling [C]∥ Proceedings of 21th International Conference on ComputerAided Design. Washington, D.C.: ACM, 2003: 801808.
[11] KENNEDY J, EBERHART R. Particle swarm optimization [C]∥ Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE, 1995: 19421948.
[12] SHI Y, EBERHART R. A modified particle swarm optimizer [C]∥ Proceedings of IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Anchorage: IEEE, 1998: 6973.
[13] HWANGCHERNG C, SHUHSIEN C. High performance sense amplifier circuit for low power SRAM applications [C]∥ Proceedings of the 2004 International Symposium on Circuits and Systems. Vancouver: IEEE, 2004: 741744.
[14] SUNDARAM S, ELAKKUMANAN P, SRIDHAR R. High speed robust current sense amplifier for nanoscale memories: a winner take all approach [C]∥ Proceedings of 19th International Conference on VLSI Design, Held Jointly with 5th International Conference on Embedded System and Design. Hyderabad: IEEE, 2006: 6.
[15] TAWDROSS P, KONIG A. Local parameters particle swarm optimization [C]∥ Proceedings of 6th International Conference on Hybrid Intelligent Systems. Auckland: IEEE, 2006: 5255.
[16] ZIELINSKI K, LAUR R. Adaptive parameter setting for a multiobjective particle swarm optimization algorithm [C]∥ Proceedings of IEEE Congress on Evolutionary Computation. Canberra: IEEE, 2007: 30193026.

[1] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[2] 蒋湛,姚晓明,林兰芬. 基于特征自适应的本体映射方法[J]. J4, 2014, 48(1): 76-84.
[3] 陈迪仕 ,张宇,李平. 微小型无人直升机地面效应建模[J]. J4, 2014, 48(1): 154-160.
[4] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[5] 陈钊,余锋,陈婷婷. 基于日志结构的闪存均衡回收策略[J]. J4, 2014, 48(1): 92-99.
[6] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[7] 杨鑫,许端清,杨冰. 基于不规则性的并行计算方法[J]. J4, 2013, 47(11): 2057-2064.
[8] 王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.
[9] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[10] 崔何亮, 张丹, 施斌.  布里渊分布式传感的空间分辨率及标定方法[J]. J4, 2013, 47(7): 1232-1237.
[11] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[12] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.
[13] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[14] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[15] 杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.