Please wait a minute...
J4  2010, Vol. 44 Issue (2): 276-282    DOI: 10.3785/j.issn.1008-973X.2010.02.012
计算机技术﹑电信技术     
分布式数据挖掘中基于扰乱的隐私保护方法
马进, 李锋, 李建华
(上海交通大学 电子工程系,上海 200030)
Perturbation method for distributed privacy-preserving data mining
MA Jin, LI Feng, LI Jian-hua
(Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030, China)
 全文: PDF  HTML
摘要:

通过设计一种随机数值片拆分统计机制,提出分布式环境下的匿名均值统计和匿名方差统计方法;结合同态加密机制,设计了分布式环境下的随机数据交换方法,实现了分布式环境中匿名数据交换机制.结合上述两种方法,提出分布式环境下基于数据扰乱技术的隐私保护方法,支持高效的分布式隐私保护数据挖掘.共谋攻击的实验结果和分析表明:匿名数据交换机制下的数据挖掘隐私保护方法在高密度共谋攻击的半诚实环境中有较好的鲁棒性,与主流的安全多方计算相比具有显著的效率优势;同时,该方法具有较高的灵活性和通用性,能应用于关联规则挖掘、聚类多种场合.

Abstract:

Distributed anonymous statistic mean and distributed anonymous statistic variance methods were proposed through designing randomized data separation method. A light-weight randomized data exchange protocol was proposed with homomorphic encryption mechanism to apply anonymous data exchange in distributed environment. Then a distributed anonymous data exchanging method was presented for perturbation-based privacy preserving data mining aiming at the efficiency issue towards distributed privacy preserving data mining. The experimental results and analysis show that the method is robust under high-density collusion attacks and shows more efficiency in large scale distribution environment compared with secure multiparty related methods. Furthermore, the method is flexible to apply in various types of data mining works, such as distributed associate rule mining and clustering.

出版日期: 2010-03-09
:  TP 391.7  
基金资助:

国家自然科学基金资助项目(60672068,60772098);国家“863”高技术研究发展计划资助项目(2007AA01Z473).

通讯作者: 李建华,男,教授.     E-mail: ljh888@sjtu.edu.cn
作者简介: 马进(1977—),女,河南洛阳人,博士生,从事网络安全和数据隐私保护的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

马进, 李锋, 李建华. 分布式数据挖掘中基于扰乱的隐私保护方法[J]. J4, 2010, 44(2): 276-282.

MA Jin, Li-Feng, LI Jian-Hua. Perturbation method for distributed privacy-preserving data mining. J4, 2010, 44(2): 276-282.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.02.012        http://www.zjujournals.com/eng/CN/Y2010/V44/I2/276

[1]  CRANOR L F. Web privacy with P3P [M]. Sebastopol: O’Reilly, 2002: 311.
[2] O′HERRIN J K, FOST N, KUDSK K A. Health insurance portability accountability act (HIPAA) regulations: effect on medical record research [J]. Annals of Surgery, 2004, 239(6): 772.
[3] CAN/CSA-Q830-96. Privacy code[S]. Canada: [s. n.], 1997.
[4] AGRAWAL R, SRIKANT R. Privacy-preserving data mining [J]. ACM Sigmod Record, 2000, 29(2): 439450.
[5] EVFIMIEVSKI A, SRIKANT R, AGRAWAL R, et al. Privacy preserving mining of association rules [J]. Information Systems, 2002, 29(4): 343364.
[6] FIENBERG S. E, MCINTYRE J. Data swapping: variations on a theme by Dalenius and Reiss [J]. Privacy in Statistical Databases, 2004, 3050: 1429.
[7] SWEENEY L. Achieving k-anonymity privacy protection using generalization and suppression[J]. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10(5): 571588.
[8] CHAWLA S, DWORK C, MCSHERRY F, et al. Toward privacy in public databases [C]//The 2nd Theory of Cryptography Conference. Cambridge: Springer, 2005: 363385.
[9] YAO A C C. How to generate and exchange secrets [C]//Proceedings of the 27th Annual Symposium on Foundations of Computer Science. Toronto: IEEE, 1986: 162167.
[10] BEAVER D, Foundations of secure interactive computing [C]// Advances in Cryptology. Santa Barbara: Springer, 1991: 377391.
[11] CRAMER R, DAMGARD I, NIELSEN J B. Multiparty computation from threshold homomorphic encryption [J]. Advances in Cryptology:EUROCRYPT 2001, 2001, 2045: 280300.
[12] ZHONG S. Privacy-preserving algorithms for distributed mining of frequent itemsets [J]. Information Sciences, 2007, 177(2): 490503.
[13] DATTA S, BHADURI K, GIANNELLA C. Distributed data mining in peer-to-peer networks [J]. IEEE Internet Computing, 2006, 10(4): 18.
[14] INAN A, KAYA S V, SAYGIN J. Privacy preserving clustering on horizontally partitioned data[J]. Data and Knowledge Engineering, 2007, 63(3): 646666.
[15] KARGUPTA H, DAS K, LIU K. Multi-party, privacy-preserving distributed data mining using a game theoretic framework [J]. Lecture Notes in Computer Science, 2007, 4702: 523531.
[16] PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes [J]. Lecture Notes in Computer Science, 1999, 1592: 223238.
[17] LI Z, WANG W, CHEN W. An anti-collusion solution for privacy-preserving data mining [C]//International Conference on Communication Technology. Guilin: [s. n.], 2006: 15.

[1] 沈晔 ,李敏丹,夏顺仁. 计算机辅助乳腺癌诊断中的非平衡学习技术[J]. J4, 2013, 47(1): 1-7.
[2] 沈晔, 李敏丹, 夏顺仁. 计算机辅助乳腺癌诊断中的非平衡学习技术[J]. J4, 2013, 47(1): 1-7.
[3] 赵杰伊,唐敏,童若锋. 基于CUDA的细分曲面阴影体算法[J]. J4, 2012, 46(7): 1301-1306.
[4] 徐进, 张树有, 费少梅. 基于自适应粒子群的产品再制造拆卸规划[J]. J4, 2011, 45(10): 1746-1752.
[5] 解利军, 王彦妮, 张帅. 基于改进粒子群算法的体绘制传递函数设计[J]. J4, 2010, 44(8): 1466-1472.
[6] 盛文露, 唐任仲, 刘运通. 基于本体的饰品创新设计过程知识服务建模[J]. J4, 2009, 43(12): 2268-2273.
[7] 刘肖健, 孙守迁, 陈实. 基于图像的编织产品三维图案结构映射[J]. J4, 2009, 43(8): 1367-1371.