Please wait a minute...
J4  2010, Vol. 44 Issue (12): 2365-2369    DOI: 10.3785/j.issn.1008-973X.2010.12.022
计算机技术﹑电信技术     
一类多阶指数函数的逐级递推式拟合算法
胡旭晓1, 潘晓弘1, 何卫2, 陈罡3
1.浙江大学 现代制造工程研究所,浙江 杭州 310027; 2.杭州机床集团有限公司,浙江 杭州 310022;
3.浙江纺织服装学院 机电研究所,浙江 宁波 315211
Step by step fitting algorithm for multi-order exponential function
HU Xu-xiao1, PAN Xiao-hong1, HE Wei2, CHEN Gang3
1. Institute of Modern Manufacturing Engineering, Zhejiang University,Hangzhou 310027,China; 2. Hangzhou Machine
Tool Group Co., Ltd., Hangzhou 310022, China; 3. Institute of MechanicsElectrics, Zhejiang Texile and Fashion and
College, Ningbo 315211, China
 全文: PDF  HTML
摘要:

针对一类时间常数相差较大的多阶指数函数,提出一种逐级递推式拟合算法.根据不同时间常数的指数函数具有不同平衡时间的特点,首先选取最后一段,采用一阶指数函数的拟合算法进行拟合,从而确定最后一项指数函数的幅值和时间常数;然后选取倒数第二段,通过变换同样采用一阶指数函数的拟合算法进行拟合,逐级递推,分别得到多阶指数函数不同项的时间常数和相应的幅值.此方法简单实用,具有较高的拟合精度,适合于具有大进给力的纳米级热驱动部件的精确建模.

Abstract:

A step by step fitting algorithm was presented for multi-order exponential function with larger time constant difference. For the exponential function with different time constant has different balance time. The last part is firstly fitted by the algorithm for singleorder exponential function, then confirm the amplitude and time constant of the last item of the multiorder exponential function, then choose the last second section, adopt the same fitting algorithm for singleorder exponential function through translating, and get different time constants and corresponding amplitude separately step by step. The algorithm is simple and practical, with high precision of fitting. It was applied to establish the mathematical model of the nanometer drive parts with large feeding force.

出版日期: 2010-12-01
:  TP 271  
基金资助:

浙江省重大科技专项基金资助项目 (2008C01026-1);国家科技重大专项基金资助项目(2009ZX04014-026-04);博士学科点专项科研基金资助项目(200803350028).

作者简介: 胡旭晓(1965—),男,浙江永康人,副教授,从事机电一体化等的研究. E-mail:huxuxiao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡旭晓, 潘晓弘, 何卫, 陈罡. 一类多阶指数函数的逐级递推式拟合算法[J]. J4, 2010, 44(12): 2365-2369.

HU Xu-xiao, PAN Xiao-hong, HE Wei, CHEN Gang. Step by step fitting algorithm for multi-order exponential function. J4, 2010, 44(12): 2365-2369.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.12.022        http://www.zjujournals.com/eng/CN/Y2010/V44/I12/2365

[1] TANG C, WANG W P, YAN H Q, et al. Highorder predictorcorrector of exponential fitting for the Nbody problems[J]. Journal of Computational Physics, 2006, 214(2): 505-520.
[2] MARTINVAQUERO J, VIGOAGUIAR J, Exponential fitting BDF algorithms: explicit and implicit 0stable methods[J]. Journal of Computational and Applied Mathematics, 2006, 192(1): 100-113.
[3] COLEMAN J P, IXARU L G, Truncation errors in exponential fitting oscillatory problems[J]. SIAM Journal on Numerical Analysis, 2006, 44(4): 1441-1465.
[4] TANG C, YAN H Q, ZHANG H, et al. The arbitrary order implicit multistep schemes of exponential fitting and their applications[J]. Journal of Computational and Applied Mathematics, 2005, 173(1): 155-168.
[5] VIGOAGUIAR J, MARTINVAQUERO J, CRIADO R. On the stability of exponential fitting BDF algorithms[J]. Journal of Computational and Applied Mathematics, 2005, 175(1): 183-194.
[6] DULKIN I N, GARASKO G I. Analytical solutions of 1D heat conduction problem for a single fin with temperature dependent heat transfer coefficient  I. Closedform inverse solution[J]. International Journal of Heat and Mass Transfer, 2002, 45(9): 1895-1903.
[7] 郝艳棒,王国利,李彦明,等. 基于双指数函数拟合的冲击波形参数提取算法[J]. 高电压技术, 2000, 26(3): 31-34.

HAO Yanbang, WANG Guoli, LI Yanming, et al. A double exponential function fitting algorithm for impulse parameter evaluation [J]. High Voltage Engineering, 2000, 26(3): 31-34.

[1] 于淼, 王佳森, 齐冬莲. 具有未知控制方向的输出反馈自适应学习控制[J]. J4, 2013, 47(8): 1424-1430.
[2] 陈力, 杨莹春. 基于邻居相似现象的情感说话人识别[J]. J4, 2012, 46(10): 1790-1795.
[3] 张雷, 邬义杰, 王彬, 刘孝亮. 基于正交建模的空间柔顺构件多目标优化[J]. J4, 2012, 46(8): 1419-1423.
[4] 张雷, 邬义杰, 李佳琪, 王彬, 刘孝亮. 基于线圈阻抗动态测量的GMM自传感模型[J]. J4, 2011, 45(10): 1726-1731.
[5] 白寒, 管成. 电液比例系统鲁棒自适应动态表面控制[J]. J4, 2010, 44(8): 1441-1448.
[6] 白寒, 管成, 潘双夏. 基于模糊决策的推土机滑模鲁棒自适应控制[J]. J4, 2009, 43(12): 2178-2185.