Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 985-995    DOI: 10.3785/j.issn.1008-973X.2020.05.017
地球科学     
基于多源遥感数据的大襟岛海域悬浮泥沙观测
黄国容1(),张霄宇1,2,3,*(),韩亚超4,陈嘉星1,张永军4
1. 浙江大学 地球科学学院,浙江 杭州 310058
2. 浙江大学 海洋研究院,浙江 舟山 316000
3. 浙江省海洋观测-成像试验区重点实验室,浙江 舟山 316000
4. 中国自然资源航空物探遥感中心,北京 100083
Observation of suspended sediment in sea area around Dajin Island based on multi-source remote sensing data
Guo-rong HUANG1(),Xiao-yu ZHANG1,2,3,*(),Ya-chao HAN4,Jia-xing CHEN1,Yong-jun ZHANG4
1. School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
2. Ocean Academy, Zhejiang University, Zhoushan 316000, China
3. Key Laboratory of Zhejiang Ocean Observation-Imaging Testbed of Zhejiang Province, Zhoushan 316000, China
4. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
 全文: PDF(4185 KB)   HTML
摘要:

珠江口黄茅海大襟岛海域是中华白海豚栖息地. 为了对该海域的水质进行评估,采用集成机载光谱成像仪(CASI)影像对悬浮泥沙质量浓度进行观测,并根据实测光谱构建适用于CASI影像和中分辨率成像光谱仪(MODIS)影像的悬浮泥沙质量浓度单波段反演模型. 此外利用实测悬浮泥沙数据和MODIS影像对反演的悬浮泥沙质量浓度进行精度评定. 研究表明,基于CASI数据的单波段指数模型可以较好地反演研究海域的悬浮泥沙质量浓度,相对平均误差为11.16%,此外单波段指数模型也可以较好地应用在MODIS影像上,相对平均误差为15.18%. 研究区域悬浮泥沙质量浓度为0.48~12.15 mg/L,对海豚栖息区的生态环境未构成明显影响. 结合基于MODIS的珠江口海域悬浮泥沙遥感影像发现,研究区域悬浮泥沙主要输入来源为黄茅海西岸的陆源输入,黄茅海西岸陆域输入泥沙在由黄茅海向口外输送时,存在明显的分支现象,径流主轴在河口海域自西北向东南向海运输,沿岸流则沿着大襟岛自东北向西南向海运输,由此,在大襟岛北部出现低悬浮泥沙、高透明度海域,适合白海豚栖息.

关键词: CASI航空高光谱数据MODIS数据悬浮泥沙大襟岛白海豚栖息区    
Abstract:

The sea area around Daijin Island of Huangmao Sea in the Pearl Estuary, China is the habitat of Chinese white dolphins. Compact airborne spectrographic imager (CASI) image was employed to observe the suspended sediment concentration (SSC), and a single band inversion model for the CASI and moderate-resolution imaging spectroradiometer (MODIS) was established based on the in-situ spectral measurement, in order to assess the sea water quality in this area. The accuracy of inversion SSC was assessed by MODIS with in-situ SSC data. Results show that single-band exponential model based on CASI data performs well in inversing the suspended sediment concentration in the experimental sea area with the relative error of 11.16%, and of 15.18% for MODIS. The suspended sediment concentration in the study area ranges from 0.48 to 12.15 mg/L, and the direct ecological impact to the dolphin reserve should be neglected. Combined with the observation from MODIS image of suspended sediment in the Pearl Estuary, the land-based input from the west coast of Huangmao Sea is identified as the main material source, meanwhile, there is obvious branching phenomena when the terrestrial sediments are transported from the Huangmao Sea to the outside of the estuary. The main axis of runoff is transported from northwest to southeast in the estuary, while the coastal current is transported from northeast to southwest along Dajin Island. As a result, area with low suspended sediment and high transparency forms in the north of Dajin Island, which is suitable for the thriving of dolphin.

Key words: CASI hyperspectral data    MODIS image    suspended sediment    Dajin Island    habitat of Chinese white dolphins
收稿日期: 2019-05-05 出版日期: 2020-05-05
CLC:  P 715.7  
基金资助: 国家重点研发计划重点专项资助项目(2018YFC1406600,2016YFC1400903);国家自然科学基金资助项目(40706057);中国地质调查局资助项目(121201003000150020)
通讯作者: 张霄宇     E-mail: 864585459@qq.com;zhang_xiaoyu@zju.edu.cn
作者简介: 黄国容(1994—),男,硕士生,从事水色遥感研究. orcid.org/ 0000-0002-0084-2182. E-mail: 864586459@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄国容
张霄宇
韩亚超
陈嘉星
张永军

引用本文:

黄国容,张霄宇,韩亚超,陈嘉星,张永军. 基于多源遥感数据的大襟岛海域悬浮泥沙观测[J]. 浙江大学学报(工学版), 2020, 54(5): 985-995.

Guo-rong HUANG,Xiao-yu ZHANG,Ya-chao HAN,Jia-xing CHEN,Yong-jun ZHANG. Observation of suspended sediment in sea area around Dajin Island based on multi-source remote sensing data. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 985-995.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.017        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/985

传感器
系统
光谱
范围/nm
光谱通
道数/个
光谱分
辨率/nm
带宽/nm 空间分
辨率/m
扫描
宽度/km
数据速率/
(MB·s?1
像元
尺寸/μm
光斑尺寸/
像素
CASI 1500h 380~1 050 最高288,可
自定义设置
<3.5 2.4 0.6 ≈0.3 19.2 20×20 <1.5,全波长
衍射极限
MODIS 400~1 440 36 ? 10~50 250 2 330 ? ? ?
表 1  CASI1500h和MODIS传感器技术参数
图 1  研究区CASI原始数据真彩色合成
图 2  CASI地面控制点与检校场航线分布
图 3  研究区域水体干扰信息
图 4  本研究采用的MODIS影像(方框为大襟岛及附近海域)
图 5  大襟岛周围海域水体采样以及光谱实测站位示意图
站位 经度 纬度 ρB/(mg?L?1
T1 113°4′26.34″ 21°57′29.58″ 10.07
T2 113°3′15.30″ 21°54′19.38″ 7.54
T3 113°2′24.24″ 21°53′54.90″ 8.74
T4 113°2′0.36″ 21°53′40.5″ 8.34
T5 113°4′18.84″ 21°57′33.78″ 9.54
T6 113°4′50.88″ 21°56′49.68″ 6.14
T7 113°5′13.20″ 21°56′15.84″ 1.77
T8 113°4′29.04″ 21°55′41.64″ 6.94
T9 113°5′41.04″ 21°55′14.4″ 1.87
T10 113°5′49.86″ 21°54′43.14″ 7.87
T11 113°2′33″ 21°54′58.02″ 10.94
T12 113°2′43.68″ 21°54′27.78″ 10.94
T13 113°2′50.1″ 21°54′12.42″ 11.14
T14 113°2′58.38″ 21°53′59.92″ 3.26
T15 113°3′8.7″ 21°53′44.52″ 11.74
T16 113°3′13.5″ 21°53′28.02″ 10.34
T17 113°3′21.12″ 21°53′3.78″ 18.74
T18 113°4′26.34″ 21°57′29.58″ 4.34
T19 113°3′15.30″ 21°54′19.38″ 2.14
T20 113°1′39.48″ 21°51′10.14″ 11.34
T21 113°1′34.62″ 21°51′5.52″ 3.54
T22 113°1′20.04″ 21°51′1.62″ 13.14
T23 113°1′13.62″ 21°50′57.36″ 3.54
T24 113°2′30.48″ 21°54′4.92″ 2.74
T25 113°2′14.82″ 21°53′51.48″ 7.34
T26 113°0′37.74″ 21°50′55.98″ 6.54
T27 113°0′1.26″ 21°51′4.14″ 3.74
T28 113°0′16.32″ 21°51′2.7″ 10.34
T29 112°59′56.4″ 21°51′5.16″ 8.74
T30 112°59′52.32″ 21°51′18.9″ 2.74
T31 112°59′56.28″ 21°51′33.9″ 2.34
T32 112°59′55.62″ 21°51′44.04″ 10.54
T33 112°59′57.12″ 21°51′53.46″ 8.14
T34 112°59′58.2″ 21°51′54.78″ 9.74
T35 113°0′0.6″ 21°52′2.34″ 8.74
T36 113°0′0.72″ 21°52′10.38″ 7.54
T37 113°0′4.62″ 21°52′19.8″ 9.94
表 2  站位分布经纬度以及各站位实测悬浮泥沙质量浓度
图 6  去噪前、后大襟岛海域实测水体光谱曲线图(以T22站点为例)
图 7  去噪处理后大襟岛海域实测水体光谱曲线图
图 8  实测悬浮泥沙质量浓度和遥感反射率的相关系数
图 9  基于CASI单波段遥感反射率的悬浮泥沙反演模型比较
图 10  基于CASI波段比值的悬浮泥沙反演模型比较
站位号 ρB/(mg·L?1) e/%
实测 反演
  *P<0.01
T14 3.26 2.51 23.02
T17 18.74 16.41 12.43
T21 3.54 2.90 18.15
T23 3.54 3.30 6.68
T24 2.74 2.73 0.31
T27 3.74 3.29 11.90
T30 2.74 2.57 6.03
T31 2.34 2.09 10.73
表 3  单波段模型反演悬浮泥沙质量浓度误差统计分析表
站位号 ρB/(mg·L?1) e/%
实测 反演
  *P<0.01
T14 3.26 2.94 9.67
T17 18.74 14.36 23.35
T21 3.54 2.50 29.30
T23 3.54 2.98 15.81
T24 2.74 2.40 12.27
T27 3.74 3.43 8.17
T30 2.74 2.62 4.55
T31 2.34 1.59 32.05
表 4  波段比值模型反演悬浮泥沙质量浓度误差统计分析表
图 11  大襟岛悬浮泥沙质量浓度CASI数据反演图
图 12  珠江口悬浮泥沙MODIS数据反演图(方框为CASI图像范围)
站位号 ρB/(mg·L?1) e/%
实测 反演
T1 10.07 8.81 12.48
T2 7.54 6.43 14.68
T3 8.74 7.84 10.31
T4 8.34 7.07 15.27
T5 9.54 8.80 7.76
T6 6.14 5.04 17.98
T7 1.77 1.43 19.48
T8 6.94 5.91 14.86
T9 1.87 1.56 16.61
T10 7.87 7.19 8.67
T11 10.94 9.58 12.45
T12 10.94 9.81 10.31
T14 3.26 2.34 28.12
T17 18.74 15.86 15.36
T19 2.14 1.79 16.23
T21 3.54 2.75 22.32
T23 3.54 3.10 12.35
T24 2.74 2.10 23.32
T27 3.74 3.17 15.32
T30 2.74 2.40 12.32
T31 2.34 2.05 12.54
表 5  MODIS数据悬浮泥沙反演模型误差统计分析表
1 疏小舟, 尹球, 匡定波 内陆水体藻类叶绿素浓度与反射光谱特征的关系[J]. 遥感学报, 2000, 4 (1): 41- 45
SHU Xiao-zhou, YIN Qiu, KUANG Ding-bo Relationship between algal chlorophyll concentration and spectral reflectance of inland water[J]. Journal of Remote Sensing, 2000, 4 (1): 41- 45
doi: 10.11834/jrs.20000108
2 张兵, 申茜, 李俊生, 等 太湖水体3种典型水质参数的高光谱遥感反演[J]. 湖泊科学, 2009, 21 (2): 182- 192
ZHANG Bing, SHEN Qian, LI Jun-sheng, et al Retrieval of three kinds of representative water quality parameters of Lake Taihu from hyperspectral remote sensing data[J]. Journal of Lake Science, 2009, 21 (2): 182- 192
doi: 10.3321/j.issn:1003-5427.2009.02.005
3 杨光源. 基于HSI高光谱遥感数据的水体分布提取及泥沙质量浓度反演研究[D]. 南宁: 广西师范学院, 2011.
YANG Guang-yuan. Research on extraction of water body and sediment concentration distribution inversion based on HIS hyperspectral remote sensing data [D]. Nanning: Guangxi Normal Education University, 2011.
4 SINDY S, ELS K, MARK B, et al Retrieval of suspended sediment from advanced hyperspectral sensor data in the Scheldt Estuary at different stages in the tidal cycle[J]. Marine Geodesy, 2007, 30 (1/2): 97- 108
5 OLMANSON L G, BREZONIK P L, BAUER M E Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota[J]. Remote Sensing of Environment, 2013, 130 (4): 254- 265
6 BIANCHI R, CAVALLI R M, MARINO C M, et al Use of airborne hyperspectral images to assess the spatial distribution of oil spilled during the Trecate blow-out (Northern Italy)[J]. Proceedings of SPIE: the International Society for Optical Engineering, 1995, (2585): 352- 362
7 卜志国. 航空高光谱遥感赤潮与油污染水体信息提取[D]. 青岛: 中国海洋大学, 2004.
BU Zhi-guo. Air hyperspectral remote sensing of red tide and oil polluted water information extraction [D]. Qingdao: Ocean University of China, 2004.
8 娄全胜, 陈蕾, 王平, 等 高光谱遥感技术在海洋研究的应用及展望[J]. 海洋湖沼通报, 2008, (3): 168- 173
LOU Quan-sheng, CHEN Lei, WANG Ping, et al The application and prospecting of the hyperspectral remote sensing technology in marine research[J]. Transactions of Oceanology and Limnology, 2008, (3): 168- 173
doi: 10.3969/j.issn.1003-6482.2008.03.024
9 李文凯. 河口海域悬浮泥沙时空动态遥感研究: 以珠江口为例[D]. 武汉: 华中师范大学, 2017.
LI Wen-kai. Remote sensing of suspended sediments concentration spatial-tempory dynamics in estuary water: a case in the Pearl River Estuary [D]. Wuhan: Central China Normal University, 2017.
10 李瑞杰, 王昌杰, 邵宇阳, 等 珠江口崖门出海航道回淤分析[J]. 中国港湾建设, 2005, (2): 9- 11
LI Rui-jie, WANG Chang-jie, SHAO Yu-yang, et al Research on sediment deposition in Yamen waterway[J]. China Harbor Engineering, 2005, (2): 9- 11
11 赵焕庭. 珠江河口演变[M]. 北京: 海洋出版社, 1990.
12 马玉, 陈浩昌, 蔡钰灿, 等 珠江口大襟岛中华白海豚保护区水质评价及影响因素分析[J]. 环境化学, 2011, 30 (9): 1674- 1675
MA Yu, CHEN Hao-chang, CAI Yu-can, et al Water quality assessment and influencing factors analysis of Chinese White Dolphin reserve in DaJin Island, Pearl River Estuary[J]. Environmental Chemistry, 2011, 30 (9): 1674- 1675
13 童李霞, 燕琴, 骆成凤, 等 基于NDWI分割与面向对象的水体信息提取[J]. 地理空间信息, 2017, 15 (5): 57- 59
TONG Li-xia, YAN Qin, LUO Cheng-feng, et al Water body information extraction based on NDWI segmentation and object-oriented method[J]. Geospatial Information, 2017, 15 (5): 57- 59
14 张东辉, 赵英俊, 陆冬华, 等 高光谱传感器CASI与SASI支持下的水体精准提取[J]. 传感器与微系统, 2016, 35 (5): 25- 27
ZHANG Dong-hui, ZHAO Ying-jun, LU Dong-hua, et al Accurate water extraction technology under support of CASI and SASI hyperspectral sensors[J]. Transducer and Microsystem Technologies, 2016, 35 (5): 25- 27
15 栾虹. 基于landsat8珠江口悬浮泥沙及叶绿素a浓度遥感反演及时空变化[D]. 湛江: 广东海洋大学, 2016.
LUAN Hong. Based on Landsat8 the suspended sediment concentration and chlorophyll a concentration of the Pearl River Estuary remote sensing inversion and time and spatial change [D]. Zhanjiang: Guangdong Ocean University, 2016.
16 ZHAN W K, WU J, WEI X, et al Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003?2015[J]. Continental Shelf Research, 2019, 172: 22- 32
doi: 10.1016/j.csr.2018.11.007
17 朱樊, 欧素英, 张铄涵, 等 基于MODIS影像的珠江口表层悬沙浓度反演及时空变化分析[J]. 泥沙研究, 2015, (2): 67- 73
ZHU Fan, OU Su-ying, ZHANG Shuo-han, et al MODIS images-based retrieval and analysis of spatial-temporal change of superficial suspended sediment concentration in the Pearl River Estuary[J]. Journal of Sediment Research, 2015, (2): 67- 73
18 国家质量监督检验检疫总局. 海洋监测规范: GB17378—2007 [S]. 北京: 中国标准出版社, 2007.
19 唐军武, 田国良, 汪小勇, 等 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004, 8 (1): 37- 44
TANG Jun-wu, TIAN Guo-liang, WANG Xiao-yong, et al The methods of water spectra measurement and analysisⅠ: above-water method[J]. Journal of Remote Sensing, 2004, 8 (1): 37- 44
doi: 10.11834/jrs.20040106
20 贺芳. 小波去噪方法在光谱数据处理中的应用[D]. 天津: 天津理工大学, 2011.
HE Fang. The application of wavelet denosing method in spectrum data processing [D]. Tianjin: Tianjin University of Technology, 2011.
21 王秉仁, 杨艳霞, 蔡伟, 等. 小波阈值降噪技术在振动信号处理中的应用[J]. 噪声与振动控制, 2008, 12(6): 9-13.
WANG Bing-ren, YANG Yan-xia, CAI Wei, et al. Application of wavelet threshold de-noising technique in vibration signals processing [J]. Noise and Vibration Control, 2008, 12(6): 9-13.
[1] 杜泳,张霄宇,黄大松,江彬彬,陈建裕,邓涵,姚玲玲,杨顶田. 以水体为观测目标的Worldview-2融合方法评价[J]. 浙江大学学报(工学版), 2015, 49(5): 993-1000.
[2] 王繁 凌在盈 周斌 宋立松 王新. 监测河口水体悬浮泥沙质量浓度的短期变异[J]. , 2009, 43(4): 755-759.
[3] 王繁 周斌 徐建明 宋立松 王新. 杭州湾悬浮泥沙浓度垂向分布规律分析与模拟[J]. J4, 2008, 42(11): 2028-2032.