[1] SHUM H, KANG S B. Review of image-based rendering techniques[C]//Visual Communications and Image Processing. Perth:International Society for Optics and Photonics, 2000, 4067:2-14.
[2] TATARCHENKO M, DOSOVITSKIY A, BROX T. Multi-view 3D models from single images with a convolutional network[J]. Knowledge and Information Systems, 2015, 38(1):231-257.
[3] DAVISON A J. Real-time simultaneous localisation and mapping with a single camera[C]//Proceedings Ninth IEEE International Conference on Computer Vision. Nice:IEEE, 2003:1403-1410.
[4] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM:a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163.
[5] DURRANTWHYTE H F, BAILEY T. Simultaneous localization and mapping[J]. IEEE Robotics Automat Mag, 2006, 13(3):108-117.
[6] LEMAIRE T, BERGER C, JUNG I K, et al. Vision-based SLAM:stereo and monocular approaches[J]. International Journal of Computer Vision, 2007, 74(3):343-364.
[7] JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]//Advances in Neural Information Processing Systems. Montreal:[s. n.], 2015:2017-2025.
[8] TATARCHENKO M, DOSOVITSKIY A, BROX T. Single-view to multi-view:reconstructing unseen views with a convolutional network[J]. Knowledge and Information Systems, 2015, 38(1):231-257.
[9] ZHAO B, WU X, CHENG Z Q, et al. Multi-view image generation from a single-view[C]//Proceedings of the 26th ACM International Conference on Multimedia. Seoul:ACM, 2018:383-391.
[10] ZHOU T, TULSIANI S, SUN W, et al. View synthesis by appearance flow[C]//European Conference on Computer Vision. Cham:Springer, 2016:286-301.
[11] PARK E, YANG J, YUMER E, et al. Transformation-grounded image generation network for novel 3d view synthesis[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE, 2017:702-711.
[12] EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]//Advances in Neural Information Processing Systems. Montreal:MIT Press, 2014:2366-2374.
[13] SHI J, POLLEFEYS M. Pulling things out of perspective[C]//IEEE Conference on Computer Vision and Pattern Recognition. Ohio:IEEE, 2014:89-96.
[14] LIU F, SHEN C, LIN G, et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10):2024-2039.
[15] ABRAMS A, HAWLEY C, PLESS R. Heliometric stereo:shape from sun position[C]//Computer Vision-ECCV 2012. Berlin:Springer, 2012:357-370.
[16] FURUKAWA Y, HERNÁNDEZ C. Multi-view stereo:a tutorial[J]. Foundations and Trends® in Computer Graphics and Vision, 2015, 9(1/2):1-148.
[17] RANFTL R, VINEET V, CHEN Q, et al. Dense monocular depth estimation in complex dynamic scenes[C]//Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016.
[18] SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1-3):7-42.
[19] WOODHAM R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 1980, 19(1):1-22.
[20] GODARD C, MAC AODHA O, BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency[C]//Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017, 2(6):7.
[21] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE, 2017:5967-5976.
[22] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.
[23] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
[24] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders:feature learning by inpainting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:2536-2544.
[25] WANG Y, LI J, LU Y, et al. Image quality evaluation based on image weighted separating block peak signal to noise ratio[C]//International Conference on Neural Networks and Signal Processing. Nanjing:IEEE, 2003:994-997. |