Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (1): 99-106    DOI: 10.3785/j.issn.1008-973X.2019.01.011
计算机技术     
优先级区分服务的机载网络媒质接入控制协议
刘炜伦, 张衡阳, 郑博, 高维廷
空军工程大学 信息与导航学院, 陕西 西安 710077
Multi-channel media access control protocol with differential services in airborne network
LIU Wei-lun, ZHANG Heng-yang, ZHENG Bo, GAO Wei-ting
Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
 全文: PDF(1038 KB)   HTML
摘要:

为了保障机载网络的系统容量及最高优先级业务严格的时效性与可靠性需求,提出区分优先级的媒质接入控制协议. 该协议对高、低优先级业务,分别采用多信道随机接入和多信道忙闲接入2种不同的信道接入策略,结合竞争窗口随信道忙闲程度自适应调整的退避机制,实现了多优先级区分服务. 通过建立多信道忙闲碰撞模型和退避模型,根据高优先级业务的QoS需求,计算求解不同信道数量下低优先级业务的最优负载取值区间和接入门限以及各项系统性能的数学表达式. 仿真结果表明,该协议不仅具有较高的系统容量(>10 Mb/s),而且能够保证高优先级业务严格的时效性(<2 ms)、可靠性(>99%)需求,与带差分服务的跳频MAC (PFH-MAC)协议和区分优先级的自适应抖动MAC (PAJ-MAC)协议相比,性能有较大的提升.

Abstract:

A differential priority based multi-channel media access control protocol was proposed in order to guarantee the system capacity and strict demands of timeliness and reliability on the high priority traffic in airborne networks. Two different channel access strategies were used which are multi-channel random access and multi-channel busy-idle access for high and low priority traffic respectively. A backoff mechanism based on the channel loads was adopted to dynamically adjust the connection window according to the busy degree of channels. Then differential service can be effectively provided. The optimal channel load interval and the access threshold of the low priority traffic in different number of channels as well as all system performance expressions were derived by establishing the multi-channel busy-idle collision model, backoff model and combining with the QoS demand of high priority traffic. The simulation results show that the protocol can ensure the strict timeliness (<2 ms), reliability (>99%) of high priority traffic and system capacity (>10 Mbit/s). The performance was improved much by comparing with priority frequency hopping (PFH-MAC) and prioritized adaptive jitter based media access control (PAJ-MAC) protocols.

收稿日期: 2018-05-28 出版日期: 2019-01-07
CLC:  TP393  
基金资助:

国家自然科学基金资助项目(61701521);博士后科学基金资助项目(2016M603044);航空科学基金资助项目(20150896010,20161996010)

通讯作者: 张衡阳,男,副教授.orcid.org/0000-0002-1711-2020.     E-mail: hareed@163.com
作者简介: 刘炜伦(1993-),男,硕士生,从事机载自组网的研究.orcid.org/0000-0002-0690-2035.E-mail:1197853086@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘炜伦, 张衡阳, 郑博, 高维廷. 优先级区分服务的机载网络媒质接入控制协议[J]. 浙江大学学报(工学版), 2019, 53(1): 99-106.

LIU Wei-lun, ZHANG Heng-yang, ZHENG Bo, GAO Wei-ting. Multi-channel media access control protocol with differential services in airborne network. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 99-106.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.01.011        http://www.zjujournals.com/eng/CN/Y2019/V53/I1/99

[1] WAN Y, NAMUDURI K, ZHOU Y, et al. A smooth-turn mobility model for airborne networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(7):3359-3370.
[2] XIE J F, WAN Y, KIM J H, et al. A survey and analysis of mobility models for airborne networks[J]. IEEE Communications Surveys and Tutorials, 2014, 16(3):1221-1238.
[3] CHRISTMANN A, LEVETT D. Design considerations for next generation traction drive IGBT based power modules[C]//Transportation Electrification Conference and Expo (ITEC). Dearborn:IEEE, 2016:1-5.
[4] KWAH K J, SAGDUYU Y, YACKOSKI J, et al. Airborne network evaluation:challenges and high fidelity emulation solution[J]. IEEE Communications Magazine, 2014, 52(10):30-36.
[5] CAO S, LEE V. A novel adaptive TDMA-based MAC protocol for VANETs[J]. IEEE Communications Letters, 2018, 22(3):614-617.
[6] SU Y. A TDMA MAC scheduling protocol algorithm for wireless mobile Ad Hoc network and its performance analyses performance analyses[C]//5th International Conference on Computer Science and Network Technology (ICCSNT). Changchun:IEEE, 2016:471-475.
[7] ZHANG X M. New method for analyzing nonsaturated IEEE 802.11 DCF networks[J]. IEEE Wireless Communications Letters, 2013, 2(2):243-246.
[8] WAN Y, NAMUDURI K, ZHOU Y, et al. Fair and efficient full Duplex MAC protocol based on the IEEE 802.11 DCF[C]//27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Valencia:IEEE, 2016:1-6.
[9] CHOI J. NOMA-based random access with multi-channel ALOHA[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12):2736-2743.
[10] HUANG K S, HWANG C K, LEE B K, et al. An exact closed-form formula of collision probability in diverse multiple access communication systems with frame slotted aloha protocol[J]. Journal of the Franklin Institute, 2017, 354(13):5739-5752.
[11] HERDER J C, STEVENS J A. Method and architecture for TTNT symbol rate scaling modes:US, US 7839900 B1[P]. 2010-11-23.
[12] 赵玮, 郑博, 张衡阳, 等. 基于RS-Polar编码的机载战术网络MAC协议[J]. 计算机工程, 2017, 43(12):83-87 ZHAO Wei, ZHENG Bo, ZHANG Heng-yang, et al. MAC protocol based on RS-Polar coding for airborne tactical network[J]. Computer Engineering, 2017, 43(12):83-87
[13] 高晓琳, 韩丰, 晏坚, 等. 一种支持QoS的航空自组织网络无反馈MAC协议建模[J]. 北京航空航天大学学报, 2016, 42(6):1169-1175 GAO Xiao-lin, HAN Feng, YAN Jian, et al. Model providing QoS guarantee for feedback-free MAC in aeronautical AdHoc networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1169-1175
[14] 王叶群, 杨峰, 黄国策, 等. 一种航空自组网中带差分服务的跳频MAC协议建模[J]. 软件学报, 2013, 24(9):2214-2225 WANG Ye-qun, YANG Feng, HUANG Guo-ce, et al. Media access control protocol with differential service in aeronautical frequency-hopping Ad Hoc networks[J]. Journal of Software, 2013, 24(9):2214-2225
[15] 肖雷蕾, 张衡阳, 毛玉泉, 等. 一种区分优先级自适应抖动的媒质接入控制协议[J]. 西安交通大学学报, 2015, 49(10):123-129 XIAO Lei-lei, ZHANG Heng-yang, MAO Yu-quan, et al. An adaptive jitter based media access control protocol with priorities[J]. Journal of Xi'an Jiao Tong University, 2015, 49(10):123-129
[16] ZHANG B, HU Z, XING K. Performance of RS-Turbo concatenated code in AOS[C]//11th International Conference on Electronic Measurement and Instruments. Harbin:IEEE, 2013:983-987.

[1] 赖晓翰, 文昊翔, 陈隆道. 潮间带无线传感器网络路由算法[J]. 浙江大学学报(工学版), 2018, 52(12): 2414-2422.
[2] 刘臻, 武泽慧, 曹琰, 魏强. 基于漏洞指纹的软件脆弱性代码复用检测方法[J]. 浙江大学学报(工学版), 2018, 52(11): 2180-2190.
[3] 齐小刚, 王振宇, 刘立芳, 刘兴成, 马久龙. 无线传感器和执行器网络可靠高效路由[J]. 浙江大学学报(工学版), 2018, 52(10): 1964-1972.
[4] 胡钢, 徐翔, 过秀成. 基于解释结构模型的复杂网络节点重要性计算[J]. 浙江大学学报(工学版), 2018, 52(10): 1989-1997.
[5] 任智源, 侯向往, 郭凯, 张海林, 陈晨. 分布式卫星云雾网络及时延与能耗策略[J]. 浙江大学学报(工学版), 2018, 52(8): 1474-1481.
[6] 贾文超, 胡荣贵, 施凡, 许成喜. 多特征关联的注入型威胁检测方法[J]. 浙江大学学报(工学版), 2018, 52(3): 524-530.
[7] 李冰, 金涛, 陈帅. 提高SRAM PUFs密钥生成可靠性的方法[J]. 浙江大学学报(工学版), 2018, 52(1): 133-141.
[8] 余洋, 夏春和, 胡潇云. 采用混和路径攻击图的防御方案生成方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1745-1759.
[9] 罗友强, 刘胜利, 颜猛, 武东英. 基于通信行为分析的DNS隧道木马检测方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1780-1787.
[10] 尹可挺, 周波, 张帅, 徐斌, 陈一稀, 江丹. Web服务组合中基于QoS的自底向上服务替换[J]. J4, 2010, 44(4): 700-709.
[11] 王瑞琴, 孔繁胜, 潘俊. 基于WordNet的无导词义消歧方法[J]. J4, 2010, 44(4): 732-737.
[12] 周强, 应晶, 吴明晖. 基于特征分类的机会网络多因素预测路由[J]. J4, 2010, 44(3): 413-419.
[13] 欧阳杨, 陈宇峰, 陈溪源, 等. 教育语义网中的知识领域本体建模[J]. J4, 2009, 43(09): 1591-1596.
[14] 孔祥杰, 沈国江, 梁同海. 具有公交优先的路网交通流智能协调控制[J]. J4, 2009, 43(6): 1026-1031.
[15] 王健, 孙建伶, 王新宇, 等. 软件容错模型中的部分抢占实时调度算法[J]. J4, 2009, 43(6): 1047-1052.