Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2083-2091    DOI: 10.3785/j.issn.1008-973X.2018.11.006
土木与水利工程     
侧流式消能井横轴漩涡气柱水力特性试验研究
万五一, 史梦珊, 张博然, 范磊磊
浙江大学 建筑工程学院, 浙江 杭州 310058
Experimental investigation on characteristics of horizontal vortex column in side-flow energy dissipation well
WAN Wu-yi, SHI Meng-shan, ZHANG Bo-ran, FAN Lei-lei
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1894 KB)   HTML
摘要:

采用物理模型试验分析侧流式消能井中横轴漩涡气柱的形成与消散特性.通过试验获得横轴漩涡的水力特性,得到不同流量、水位和溢流宽度情况下的横轴漩涡历时概率分布,通过无量纲法分析横轴漩涡的形成与消散规律.结果表明,当输水流量低于稳定流量时,漩涡气柱历时概率随输水流量增大而增大;当输水流量高于稳定流量时,横轴漩涡历时概率随输水流量增大而减小.当淹没水深低于稳定水深时,漩涡气柱历时概率随水深增加大增大;当淹没水深高于稳定水深时,横轴漩涡历时概率随水深增加而减小.横轴漩涡历时概率随溢流宽度的增大而增加.通过合理设置淹没水深和溢流宽度可防止横轴漩涡气柱的产生,改善侧流式消能井的水流流态,提高输水系统的运行效率.

Abstract:

A physical model test was conducted to analyze the formation and dissipation mechanism of horizontal vortex column in side-flow energy dissipation well. The basic hydraulic characteristics of the horizontal vortex column were tested and the duration probabilities were obtained for different discharges, submerged depths and overflow widths. The non-dimensional method was used to analyze the formation and dissipation mechanism of the horizontal vortex column. Results showed that the duration probability of the vortex column increased with the supply discharge when the supply discharge was less than the stable discharge; the duration probability of the vortex column decreased with the discharge when the supply discharge was more than the stable discharge. The duration probability of the vortex column increased with the water depth when the submerged water depth was lower than the steady water depth; the duration probability of the vortex column decreased with the water depth when the submerged water depth was higher than the stable water depth. Moreover, the duration probability of the vortex column increased with the overflow width. The horizontal vortex column can be avoided, the water flow in the side-flow energy dissipation well can be improved, and the operation efficiency of the water supply system can be promoted by optimizing the submerged water depth and overflow width.

收稿日期: 2018-05-12 出版日期: 2018-11-22
CLC:  TV131  
基金资助:

国家自然科学基金资助项目(51779216,51279175);浙江省自然科学基金资助项目(LZ16E090001)

作者简介: 万五一(1975-),男,副教授,从事水力学及河流动力学研究.orcid.org/0000-0002-8740-749X.E-mail:wanwuyi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

万五一, 史梦珊, 张博然, 范磊磊. 侧流式消能井横轴漩涡气柱水力特性试验研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2083-2091.

WAN Wu-yi, SHI Meng-shan, ZHANG Bo-ran, FAN Lei-lei. Experimental investigation on characteristics of horizontal vortex column in side-flow energy dissipation well. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2083-2091.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.006        http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2083

[1] 穆祥鹏, 练继建, 赵威. 并联输水箱涵检修操作过程中的水力仿真及瞬变控[J]. 水利学报, 2008, 39(4):448-453 MU Xiang-peng, LIAN Ji-jian, ZHAO Wei. Hydraulic control of long distance water diversion box culvert with multiple opening in the process of gate operation for overhaul[J]. Journal of Hydraulic Engineering, 2008, 39(4):448-453
[2] 穆祥鹏, 练继建, 李琳. 基于水力控制的分段低压输水系统优化研究[J]. 四川大学学报:工程科学版, 2008, 39(4):448-453 MU Xiang-peng, LIAN Ji-jian, LI Lin. Optimization on the stepped low-pressurized water diversion system based on hydraulic control[J]. Journal of Sichuan University:Engineering Science Edition, 2008, 39(4):448-453
[3] 万五一, 练继建, 崔广涛. 分段低压输水管系的水力振荡特性[J]. 水利学报, 2003, 34(12):34-39 WAN Wu-yi, LIAN Ji-jian, CUI Guang-tao. Oscillation characteristics of stepped low-pressurized piping systems[J]. Journal of Hydraulic Engineering, 2003, 34(12):34-39
[4] 万五一, 李玉柱, 王建军. 保水堰的交替水流数值模拟初探[J]. 水利水电科技进展, 2006, 26(1):20-22 WAN Wu-yi, LI Yu-zhu, WANG Jian-jun. Numerical simulation of alternate flow in overflow weirs[J]. Advances in Science and Technology of Water Resources, 2006, 26(1):20-22
[5] 高学平, 杜敏, 赵耀威, 等. 进水口随机出现的漩涡试验研究[J]. 水力发电学报, 2009, 28(4):137-142 GAO Xue-ping, DU Min, ZHAO Yao-wei, et al. Experimental study of stochastic vortex in hydraulic intakes[J]. Journal of Hydroelectric Engineering, 2009, 28(4):137-142
[6] 孙洪亮, 刘亚坤. 进水口自由表面漩涡特性研究[J]. 水力发电学报, 2016, 35(4):67-71. SUN Hong-liang, LIU Ya-kun. Characteristics of free surface vortices in hydraulic intakes[J]. Journal of Hydroelectric Engineering, 2016, 35(4):67-71.
[7] 陈云良, 伍超, 叶茂, 等. 立轴漩涡多圈螺旋流速度分布的研究[J]. 水利学报, 2005, 36(10):1269-1272 CHEN Yun-liang, WU Chao, YE Mao, et al. Velocity distribution of vertical vortex with multi-circle spiral flow[J]. Journal of Hydraulic Engineering, 2005, 36(10):1269-1272
[8] 陈云良, 伍超, 叶茂, 等. 立轴旋涡多圈螺旋流场特性研究[J]. 四川大学学报:工程科学版, 2007, 39(1):13-17 CHEN Yun-liang, WU Chao, YE Mao, et al. Research on flow field characteristics of vertical vortex with multi-circle spiral flow[J]. Journal of Sichuan University:Engineering Science Edition, 2007, 39(1):13-17
[9] HECKER G E. Model-prototype comparison of free surface vortices[J]. Journal of the Hydraulics Division Asce, 1981, 107(10):1243-1259.
[10] 汝树勋, 刘亚辉. 进口漏斗旋涡对有压隧洞脉动壁压的影响[J]. 成都科技大学学报, 1990, 6(13):85-91 RU Shu-xun, LIU Ya-hui. The effeets of a free surface vortex on pressure fluetuations[J]. Journal of Chengdu University of Science and Technology, 1990, 6(13):85-91
[11] 王英奎. 立轴漩涡的力学特性与防控措施研究[D]. 北京:清华大学, 2011:3. WANG Ying-kui. Mechanical characteristics and the control measurement for the vertical vortex[D]. Beijing:Tsinghua University, 2011:3.
[12] 王海军, 梅伟, 张强. 跌坎式底流消能工坎后横轴漩涡水力特性研究[J]. 水利水电技术, 2008, 39(5):23-25 WANG Hai-jun, MEI Wei, ZHANG Qiang. Study on hydraulic characteristics of transverse vortex behind sill of energy dissipator with step-down floor[J]. Water Resources and Hydropower Engineering, 2008, 39(5):23-25
[13] 倪汉根, 陈霞. 平面旋涡(中心型奇点)水力特性的探讨[J]. 水利学报, 1998, 29(11):50-56. NI Han-gen, CHEN Xia. Discussion on hydraulic properties of plane vortex with standing center[J]. Journal of Hydraulic Engineering, 1998, 29(11):50-56.
[14] 高鹏, 杨永全, 邓军, 等. 多孔淹没出流消力池复杂流态分析[J]. 四川大学学报:工程科学版, 2006, 38(5):70-75 GAO Peng, YANG Yong-quan, DENG Jun, et al. Investigation on complex flow pattern of multi-submerged jets into plunge pool[J]. Journal of Sichuan University:Engineering Science Edition, 2006, 38(5):70-75
[15] MOLLER G, DETERT M, BOES R M. Vortex-induced air entrainment rates at intakes[J]. Journal of Hydraulic Engineering, 2013, 141(11):1-8.
[16] GOGUS M, KOKEN M, BAYKARA A. Formation of air-entraining vortices at horizontal intakes without approach flow induced circulation[J]. Journal of Hydrodynamics B, 2016, 28(1):102-113.
[17] JI C, LIN F Y, ZOU J. Experimental investigation of vortex-ring cavitation[J]. Journal of Zhejiang University:Science A, 2017, 18(7):545-552.
[18] YILDIRIM N, EYUPOGLU A S, TASTAN K. Critical submergence for dual rectangular intakes[J]. Journal of Energy Engineering, 2012, 138(4):237-245.
[19] BAKER G R, SAFFMAN P G. Vortex interactions[J]. Annual Review of Fluid Mechanics, 1979, 11:95-121.
[20] 吴介之. 涡动力学引论[M]. 北京:高等教育出版社, 1993:18. WU Jie-zhi. Introduction to vorticity and vortex dynamics[M]. Beijing:Higer Education Press, 1993:18.
[21] 陈玉璞, 王慧民. 流体动力学[M]. 北京:清华大学出版社, 2013:62. CHEN Yu-pu, WANG Hui-min. Fluid dynamics[M]. Beijing:Tsinghua University Press, 2013:62.
[22] 高学平, 杜敏, 宋慧芳. 水电站进水口漩涡缩尺效应[J]. 天津大学学报, 2008, 41(9):1116-1119 GAO Xue-ping, DU Min, SONG Hui-fang. Scale effects on vortex at hydraulic intakes[J]. Journal of Tianjin University, 2008, 41(9):1116-1119
[23] 郑双凌, 马吉明, 陈浩波, 等. 进水口漩涡特性及临界淹没水深的研究进展[J]. 南水北调与水利科技, 2010, 8(5):129-132 ZHENG Shuang-lin, Ma Ji-ming, CHEN Hao-bo, et al. Review of vortexes and critical submergence at intakes[J]. South-to-North Water Transfers and Water Science and Technology, 2010, 8(5):129-132
[24] 党媛媛, 韩昌海. 进水口漩涡问题研究综述[J]. 水利水电科技进展, 2009, 29(1):90-94 DANG Yuan-yuan, HAN Chang-hai. Review of vortexes at intakes[J]. Advances in Science and Technology of Water Resources, 2009, 29(1):90-94
[25] TASTAN K, YILDIRIM N. Effects of Froude, Reynolds, and Weber numbers on an air-entraining vortex[J]. Journal of Hydraulic Research, 2014, 52(3):421-425.

[1] 冉启华, 刘燕, 王丰, 万五一. 变坡度变雨强下坡面流阻力特性时空分布[J]. 浙江大学学报(工学版), 2018, 52(2): 297-306.