Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 2014-2022    DOI: 10.3785/j.issn.1008-973X.2018.10.022
地球科学     
基于微震成像的采煤工作面应力异常监测
郭来功1,2, 戴广龙2, 杨本才2, 薛俊华3, 陈本良3
1. 安徽理工大学 电信学院, 安徽 淮南 232001;
2. 安徽理工大学 能源与安全学院, 安徽 淮南 232001;
3. 淮南矿业(集团)有限责任公司 深部煤炭开采与环境保护国家重点实验室, 安徽 淮南 232001
Stress anomaly monitoring of coal face based on microseismic tomography
GUO Lai-gong1,2, DAI Guang-long2, YANG Ben-cai2, XUE Jun-hua3, CHEN Ben-liang3
1. School of Electronically and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China;
2. School of Mining and Safety Engineering, Anhui University of Science and Technology, Huainan 232001, China;
3. State Key Laboratory of Deep Coal Mining and Environment Protection, Huainan Mining Group Limited Company, Huainan 232001, China
 全文: PDF(1503 KB)   HTML
摘要:

为了实现对深井采煤工作面的冲击地压灾害预防,采用微震走时成像技术,监测采煤工作面的应力异常.根据系统要求布置传感器台网,实现工作面全覆盖;采用层状模型分析地震波传播路径,计算地震波传播速度,利用子空间分阶段求解的方法进行反演,实现对监测区域的地震波走时层析成像;结合地震波速度和岩石所受应力的关系,达到研究采煤工作面应力异常的动态分布及变化特征的目的.试验结果表明:工作面推进时,煤层顶板高应力异常达到最大,工作面前方的高应力异常区动态变化范围较大,工作面后方存在较稳定的地震波低速异常,利用微震成像技术可以有效地监测地震波速度异常区域的范围及变化特征.

Abstract:

The microseismic velocity tomography technique was used to monitor the stress anomaly of coal face in order to achieve the prevention of rock burst hazards in deep coal mining face. Layout of sensors network was conducted according to the system requirements in order to achieve full coverage of the coal face. The seismic wave propagation route was analyzed by layer model, and the seismic wave velocity was calculated. The three-dimensional tomography of the seismic wave travel time in the monitoring area was realized by using the subspace interdependent method. The dynamic distribution and variation characteristics of stress anomaly in coal mining face were analyzed combined with the relationship between the seismic wave velocity and rock stress. Results show that the high abnormal stress of coal roof is maximal when the working face arrived. The dynamic range of high abnormal stress in front of the working face is larger than other areas. There is a relative stable seismic wave low velocity abnormal area at the back of working face. The microseismic tomography technique can be used to effectively monitor the change and influence range of seismic wave velocity anomaly areas.

收稿日期: 2017-08-11 出版日期: 2018-10-11
CLC:  P631  
基金资助:

国家重点研发计划资助项目(2016YFC0801402,2017YFC0805202);国家自然科学基金资助项目(51574009)

通讯作者: 戴广龙,男,教授,博导.orcid.org/0000-0003-0271-0164.     E-mail: gldai@aust.edu.cn
作者简介: 郭来功(1980-),男,副教授,从事矿山安全的研究.orcid.org/0000-0002-5235-4367.E-mail:lgguo@aust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

郭来功, 戴广龙, 杨本才, 薛俊华, 陈本良. 基于微震成像的采煤工作面应力异常监测[J]. 浙江大学学报(工学版), 2018, 52(10): 2014-2022.

GUO Lai-gong, DAI Guang-long, YANG Ben-cai, XUE Jun-hua, CHEN Ben-liang. Stress anomaly monitoring of coal face based on microseismic tomography. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 2014-2022.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.022        http://www.zjujournals.com/eng/CN/Y2018/V52/I10/2014

[1] 高保彬, 李回贵, 李化敏, 等. 声发射微震监测煤岩瓦斯复合动力灾害的研究现状[J]. 地球物理学进展, 2014, 29(2):689-697 GAO Bao-bin, LI Hui-gui, LI Hua-min, et al. Current situation of the study on acoustic emission and microseismic monitoring of coupling dynamic catastrophe for gas-fill coal-rock[J]. Progress in Geophysics, 2014, 29(2):689-697
[2] CAO A Y, DOU L M, WANG C B, et al. Microseismic precursory characteristics of rock burst hazard in mining areas near a large residual coal pillar:a case study from Xuzhuang Coal Mine, Xuzhou, China[J]. Rock Mechanics Rock Engineering, 2016, 49(11):4407-4422.
[3] 尹永明, 姜福兴, 谢广祥, 等. 基于微震和应力动态监测的煤岩破坏与瓦斯涌出关系研究[J]. 采矿与安全工程学报, 2015, 32(3):325-330 YIN Yong-ming, JIANG Fu-xing, XIE Guang-xiang, et al. Relation between coal-rock failure and methane emission based on microseismic and dynamic stress monitoring[J]. Journal of Mining and Safety Engineering, 2015, 32(3):325-330
[4] TANG C A, WANG J M, ZHANG J J. Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping Ⅱ project[J]. Journal of Rock Mechanics Geotechnical Engineering, 2010, 2(3):193-208.
[5] 雷文杰, 王兆丰, 韩真理. 采动效应微震特征及其变化规律[J]. 岩石力学与工程学报, 2015, 34(4):795-803 LEI Wen-jie, WANG Zhao-feng, HAN Zhen-li. Microseismic characteristics due to mining effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4):795-803
[6] KONICEK P, SOUCEK K, STAS L, et al. Long-hole destress blasting for rockburst control during deep underground coal mining[J]. International Journal of Rock Mechanics and Mine Sciences, 2013, 61(7):141-153.
[7] 王德超, 王琦, 李术才, 等. 基于微震和应力在线监测的深井综放采场支承压力分布特征[J]. 采矿与安全工程学报, 2015, 32(3):382-388 WANG De-chao, WANG Qi, LI Shu-cai, et al. Stress distribution characteristics of deep mine in fully-mechanized sublevel caving face based on microseismic and online stress monitoring system[J]. Journal of Mining and Safety Engineering, 2015, 32(3):382-388
[8] 李铁, 蔡美峰, 孙丽娟, 等. 基于震源机制解的矿井采动应力场反演与应用[J]. 岩石力学与工程学报, 2016, 35(9):1747-1754 LI Tie, CAI Mei-feng, SUN Li-juan, et al. Inversion of mining-induced stress field and its application based on focal mechanism solution[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9):1747-1754
[9] 汤国水, 朱志洁, 韩永亮, 等. 基于微震监测的双系煤层开采覆岩运动与矿压显现关系[J]. 煤炭学报, 2017, 42(1):212-218 TANG Guo-shui, ZHU Zhi-jie, HAN Yong-liang, et al. Relationship between overburden strata movement and strata behavior during dual system seam mining based on microseismic monitoring technology[J]. Journal of China Coal Society, 2017, 42(1):212-218
[10] LU C P, DOU L M, LIU H, et al. Case study on microseismic effect of coal and gas outburst process[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53(5):101-110.
[11] 窦林名, 蔡武, 巩思园, 等. 冲击危险性动态预测的震动波CT技术研究[J]. 煤炭学报, 2014, 39(2):238-244 DOU Lin-ming, CAI Wu, GONG Si-yuan, et al. Dynamic risk assessment of rock burst based on the technology of seismic computed tomography detection[J]. Journal of China Coal Society, 2014, 39(2):238-244
[12] 夏永学, 潘俊锋, 王元杰, 等. 基于高精度微震监测的煤岩破裂与应力分布特征研究[J]. 煤炭学报, 2011, 36(2):239-243 XIA Yong-xue, PAN Jun-feng, WANG Yuan-jie, et al. Study of rule of surrounding rock failure and stress distribution based on high-precision microseismic monitoring[J]. Journal of China Coal Society, 2011, 36(2):239-243
[13] 姜福兴, 杨淑华, 成云海, 等. 煤矿冲击地压的微地震监测研究[J]. 地球物理学报, 2006, 49(5):1511-1516 JIANG Fu-xing, YANG Shu-hua, CHENG Yun-hai, et al. Study on micro-seismic monitoring of rock burst in coal mine[J]. Chinese Journal of Geophysics, 2006, 49(5):1511-1516
[14] 王书文, 毛德兵, 杜涛涛, 等. 基于地震CT技术的冲击地压危险性评价模型[J]. 煤炭学报, 2012, 37(增1):1-6 WANG Shu-wen, MAO De-bing, DU Tao-tao, et al. Rock burst hazard evaluation model based on seismic CT technology[J]. Journal of China Coal Society, 2012, 37(supple.1):1-6
[15] 蔡武, 窦林名, 李振雷, 等. 矿震震动波速度层析成像评估冲击危险的验证[J]. 地球物理学报, 2016, 59(1):252-262 CAI Wu, DOU Lin-ming, LI Zhen-lei, et al. Verification of passive seismic velocity tomography in rock burst hazard assessment[J]. Chinese Journal of Geophysics, 2016, 59(1):252-262
[16] 窦林名, 何学秋. 采矿地球物理学[M]. 北京:中国科学文化出版社, 2002.
[17] 巩思园, 窦林名, 徐晓菊, 等. 冲击倾向煤岩纵波波速与应力关系试验研究[J]. 采矿与安全工程学报, 2012, 29(1):67-71 GONG Si-yuan, DOU Lin-ming, XU Xiao-ju, et al. Experimental study on the correlation between stress and P-wave velocity for burst tendency coal-rock samples[J]. Journal of Mining and Safety Engineering, 2012, 29(1):67-71
[18] WEI H Y, SOLEIMANI M. Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm[J]. Progress in Electromagnetics Research, 2012, 122(1):29-45.
[19] RAWLINSON N, SAMBRIDGE M. Seismic traveltime tomography of the crust and lithosphere[J]. Advances in Geophysics, 2003, 46(3):81-198.
[20] 黄国娇, 白超英. 多震相走时联合三参数同时反演成像[J]. 地球物理学报, 2013, 56(12):4215-4225 HUANG Guo-jiao, BAI Chao-ying. Simultaneous inversion of three model parameters with multiple classes of arrival times[J]. Chinese Journal of Geophysics, 2013, 56(12):4215-4225
[21] BAI C Y, GREENHALGH S. 3-D nonlinear travel time tomography:imaging high contrast velocity anomalies[J]. Pure and Applied Geophysics, 2005, 162(11):2029-2049.

[1] 刘钰, 石战结, 王帮兵, 王征宇, 余天祥. 探地雷达子波确定性稀疏脉冲反褶积技术[J]. 浙江大学学报(工学版), 2018, 52(9): 1828-1836.