Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 1901-1910    DOI: 10.3785/j.issn.1008-973X.2018.10.009
土木工程     
荷载分项系数调整对砌体结构设计的影响
吴柯娴, 金伟良, 夏晋
浙江大学 建筑工程学院, 浙江 杭州 310058
Influence of load partial factors adjustment on design of masonry structures
WU Ke-xian, JIN Wei-liang, XIA Jin
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1082 KB)   HTML
摘要:

为了确定《建筑结构可靠性设计统一标准》(GB 50068)征求意见稿中的荷载分项系数调整对砌体结构设计安全性和材料用量的影响,以《砌体结构设计规范》(GB 50003–;2011)中的无筋砌体和配筋砌体构件为研究对象,通过综合安全系数法和可靠指标法,分别计算荷载分项系数调整后砌体结构设计安全度的变化幅度.计算无筋砌体构件的横截面积增率和配筋砌体构件的配筋量增率,得到砌体结构设计材料用量的变化幅度.结果表明,荷载分项系数调整使砌体结构设计的综合安全系数提高5%,可靠指标提高5%~6.5%,无筋砌体构件的砌块材料用量提升6%~8%,配筋砌体构件的配筋量提升10%~23%.

Abstract:

Unreinforced and reinforced masonry components from Code for Design of Masonry Structures (GB 50003-2011) were analyzed in order to illustrate the influence of load partial factor adjustment on safety level and material consumption of the masonry structures in the draft of Unified Standard for Reliability Design of Building Structures (GB 50068). The comprehensive safety factor method and the reliability index method were used to calculate the change range of the masonry structures design safety after the adjustment of the load partial factors. The increase rate of cross-sectional area of the unreinforced components and the reinforcement rate of the reinforced components were calculated to obtain the variation of the material consumption. Results showed that the adjustment of load partial factors improved the comprehensive safety factors of the masonry structures by 5% and the reliability indexes by 5%~6.5%. The block material consumption of unreinforced components was increased by 6%~8%, and the reinforcement consumption of reinforced components was increased by 10%~23%.

收稿日期: 2018-04-17 出版日期: 2018-10-11
CLC:  TU365  
通讯作者: 金伟良,男,教授.orcid.org/0000-0002-8475-8032.     E-mail: jinwl@zju.edu.cn
作者简介: 吴柯娴(1998-),女,博士生,从事工程结构全寿命设计的研究.orcid.org/0000-0003-0231-1657.E-mail:11612040@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

吴柯娴, 金伟良, 夏晋. 荷载分项系数调整对砌体结构设计的影响[J]. 浙江大学学报(工学版), 2018, 52(10): 1901-1910.

WU Ke-xian, JIN Wei-liang, XIA Jin. Influence of load partial factors adjustment on design of masonry structures. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1901-1910.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.009        http://www.zjujournals.com/eng/CN/Y2018/V52/I10/1901

[1] 李永梅, 孙国富. 适当提高砌体结构设计可靠度[J]. 建筑科学, 2004, 20(02):24-27 LI Yong-mei, SUN Guo-fu. Reliability has been enhanced appropriately for design of masonry structures[J]. Building Science, 2004, 20(02):24-27
[2] 苑振芳. 《砌体结构设计规范》的发展历程和展望[J]. 工程建设标准化, 2015(07):46-53 YUAN Zhen-fang. The development and prospect of code for design of masonry structures[J]. Standardization of Engineering Construction, 2015(07):46-53
[3] 徐建, 梁建国, 石柳, 等. 我国砌体结构发展的若干问题探讨[J]. 建筑结构, 2016, 46(15):91-97 XU Jian, LIANG Jian-guo, SHI Liu, et al. Discussion on some problems of development of masonry structures in China[J]. Building Structure, 2016, 46(15):91-97
[4] 王凤来, 陈再现. 配筋砌块砌体结构承重墙体系发展概况及应用效益分析[J]. 墙材革新与建筑节能, 2009(3):43-46 WANG Feng-lai, CHEN Zai-xian. Development overview and analysis of benefits for reinforced concrete block load bearing walls system[J]. Wall Materials Innovation and Energy Saving in Buildings, 2009(3):43-46
[5] 高连玉. 高层配筋砌块砌体结构体系的关键技术研究[J]. 混凝土, 2001(09):12-18 GAO Lian-yu. Key techniques of high-rise reinforced block masonry structure system[J]. Concrete, 2001(09):12-18
[6] 李国忠. 新型墙体材料应用现状与发展趋势[J]. 21世纪建筑材料, 2009(1):31-33 LI Guo-zhong. The application current situations and development trend for new wall material[J]. 21st Century Building Materials, 2009(1):31-33
[7] 林立, 杨伟军. 基于概率烈度的结构抗震损伤可靠性分析[J]. 重庆交通大学学报:自然科学版, 2012, 31(06):1121-1124 LIN Li, YANG Wei-jun. Structure seismic damage reliability analysis based on probabilistic seismic intensity[J]. Journal of Chongqing Jiaotong University:Natural Science, 2012, 31(06):1121-1124
[8] 杜东升, 苗启松, 梁羽, 等. 老旧砌体房屋加固及顶部加层隔震的理论分析及振动台试验[J]. 土木工程学报, 2013, 46(08):45-54 DU Dong-sheng, MIAO Qi-song, LIANG Yu, et al. Theoretical analysis and shaking table tests of old masonry structure reinforced by external frames with added stories on the top using seismic isolation technology[J]. China Civil Engineering Journal, 2013, 46(08):45-54
[9] 肖建庄, 黄江德, 李宏, 等. 灾后重建再生砌块砌体结构性能和设计研究[J]. 四川大学学报:工程科学版, 2009, 41(03):202-208 XIAO Jian-zhuang, HUANG Jiang-de, LI Hong, et al. Structural performance and design investigation on recycled concrete block masonry during post-earthquake reconstruction[J]. Journal of Sichuan University:Engineering Science Edition, 2009, 41(03):202-208
[10] 砖石结构设计规范:GBJ 3-73[S]. 北京:中国建筑工业出版社, 1973.
[11] 砌体结构设计规范:GBJ 3-88[S]. 北京:中国建筑工业出版社, 1988.
[12] 砌体结构设计规范:GB 50003-2001[S]. 北京:中国建筑工业出版社, 2001.
[13] 砌体结构设计规范:GB 50003-2011[S]. 北京:中国建筑工业出版社, 2011.
[14] 金伟良, 岳增国, 高连玉. 《砌体结构设计规范》的回顾与进展[J]. 建筑结构学报, 2010, 31(06):22-28 JIN Wei-liang, YUE Zeng-guo, GAO Lian-yu. State-of-art development on Code for design of masonry structures[J]. Journal of Building Structures, 2010, 31(06):22-28
[15] 严家熺. 砌体结构可靠度的发展——砌体规范可靠度编制的背景材料[J]. 武汉大学学报:工学版, 2015, 48(增刊):10. YAN Jia-xi. Development of reliability of masonry structures:background materials for compiling the reliability of masonry code[J]. Engineering Journal of Wuhan University, 2015, 48(Suppl.):10.
[16] 刘立新, 谢丽丽. 砌体结构可靠度分析及可靠度水平调整的建议[J]. 郑州工业大学学报, 1999, 20(04):10-13 LIU Li-xin, XIE Li-li. Reliability analysis of masonry structure and suggestion of reliability level adjustment[J]. Journal of Zhengzhou University of Technology, 1999, 20(04):10-13
[17] 苑振芳, 严家熺. 《砌体结构设计规范》GBJ3-88可靠度水平修订的意见[J]. 建筑科学, 1999, 15(05):30-31 YUAN Zhen-fang, YAN Jia-xi. Opinions on the revision of the reliability level of GBJ3-88 for Masonry Structure Design Code[J]. Building Science, 1999, 15(05):30-31
[18] 严家熺, 金伟良, 邹道勤, 等.无筋砌体的可靠度分析[C]//2000年全国砌体结构学术会议. 重庆:[s.n.], 2000:11. YAN Jia-xi, JIN Wei-liang, ZOU Dao-qin, et al. Reliability analysis of nonreinforced masonry[C]//National Masonry Structure Conference in 2000. Chongqing:[s.n.], 2000:11.
[19] 蒋利学, 王卓琳. 我国近几代混凝土和砌体结构设计规范的可靠度比较[J]. 结构工程师, 2015, 31(02):80-88 JIANG Li-xue, WANG Zhuo-lin. Reliability comparison on national codes of recent generations for design of concrete and masonry structures[J]. Structural Engineers, 2015, 31(02):80-88
[20] 建筑结构可靠度设计统一标准:GB 50068-2001[S]. 北京:中国建筑工业出版社, 2001.
[21] 李杰. 论第三代结构设计理论[J]. 同济大学学报:自然科学版, 2017, 45(5):617-624 LI Jie. On the third generation of structural design theory[J]. Journal of Tongji University:Natural Science, 2017, 45(5):617-624
[22] 严家熺. 无筋砌体结构的可靠度分析和工程试设计[C]//1988年中国工程建设标准化协会砌体结构委员会年会. 沈阳:[s.n.], 1988:13. YAN Jia-xi. Reliability analysis and engineering design of non-reinforced masonry structures[C]//Association for Engineering Construction Standardization Masonry Committee Annual Meeting. Shenyang:[s.n.], 1988:13.
[23] 黄靓, 黄凯, 施楚贤. 基于数据库的配筋砌块砌体剪力墙受剪承载力计算公式可靠度分析[J]. 建筑结构, 2015, 45(12):96-100 HUANG Liang, HUANG Kai, SHI Chu-xian. Reliability analysis of shear bearing capacity formula of reinforced concrete masonry shear wall based on database[J]. Building Structure, 2015, 45(12):96-100
[24] 唐岱新. 砌体结构[M]. 3版. 北京:高等教育出版社, 2013:108-112.

No related articles found!