Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 1854-1863    DOI: 10.3785/j.issn.1008-973X.2018.10.003
机械与能源工程     
基于混合教-学算法的汽车装配线物料供应调度
周炳海, 彭涛
同济大学 机械与能源工程学院, 上海 201804
Part-supply scheduling of automobile assembly line with hybrid teaching-learning-based optimization algorithm
ZHOU Bing-hai, PENG Tao
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
 全文: PDF(1035 KB)   HTML
摘要:

针对汽车装配线的物料调度问题,以装配线不缺货为约束,构建多设备联合配送的准时化物料供应模型.开展问题域的描述,以优化规划期内的线边库存水平为目标,构建数学规划模型.基于标准教-学算法(TLBO)的框架,提出求解这一复杂组合优化问题的混合教-学算法(HTLBO).根据问题的特点,设计特定的编码与解码方法,确定各个设备的配送任务及排序.通过融合交换、反转和插入变异算子,构建局部搜索流程,以强化算法的全局开发能力.结合问题的性质,提出基于束搜索技术的剪枝方法,以强化算法的深度寻优能力.开展仿真实验,测试结果验证了该调度算法的可行性和有效性.

Abstract:

A just-in-time part distribution model with multiple transportation devices was analyzed under consideration of no stock-outs constraints in order to solve the part-supply scheduling problem of the automobile assembly line. The problem domain was described and a mathematical programming model was developed to minimize the line-side inventory levels in the planning horizon. A hybrid teaching-learning-based optimization (HTLBO) approach was established for this complicated combinatorial optimization problem according to the framework of the standard teaching-learning-based optimization (TLBO). A specified encoding and decoding method was proposed to assign and sequence the distribution tasks on each device according to the nature of the proposed scheduling problem. A local search procedure was presented to enhance the exploration ability of the algorithm by incorporating with swap, reversion and insertion operators. A beam-search-based pruning method was proposed by using domain properties in order to enhance the algorithm's exploiting capability. Experiments were conducted. The simulation results validated the feasibility and effectiveness of the proposed scheduling algorithm.

收稿日期: 2017-09-08 出版日期: 2018-10-11
CLC:  F273  
基金资助:

国家自然科学基金资助项目(71471135)

作者简介: 周炳海(1965-),男,教授,博导,从事离散制造系统维护、调度与仿真研究.orcid.org/0000-0002-6599-9033.E-mail:bhzhou@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

周炳海, 彭涛. 基于混合教-学算法的汽车装配线物料供应调度[J]. 浙江大学学报(工学版), 2018, 52(10): 1854-1863.

ZHOU Bing-hai, PENG Tao. Part-supply scheduling of automobile assembly line with hybrid teaching-learning-based optimization algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1854-1863.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.003        http://www.zjujournals.com/eng/CN/Y2018/V52/I10/1854

[1] 周炳海, 彭涛. 混流装配生产线准时化物料补给调度方法[J]. 控制与决策, 2017, 32(6):976-982 ZHOU Bing-hai, PENG Tao. Scheduling methods of just-in-time material replenishment in mixed-model assembly lines[J]. Control and Decision, 2017, 32(6):976-982
[2] BOYSEN N, EMDE S, HOECK M, et al. Part logistics in the automotive industry:decision problems, literature review and research agenda[J]. European Journal of Operational Research, 2015, 242(1):107-120.
[3] EMDE S, FLIEDNER M, BOYSEN N. Optimally loading tow trains for just-in-time supply of mixed-model assembly lines[J]. ⅡE Transactions, 2012, 44(2):121-135.
[4] FATHI M, RODRÍGUEZ V, ALVAREZ M J. A novel memetic ant colony optimization-based heuristic algorithm for solving the assembly line part feeding problem[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1):629-643.
[5] BOYSEN N, BOCK S. Scheduling just-in-time part supply for mixed-model assembly lines[J]. European Journal of Operational Research, 2011, 211(1):15-25.
[6] BOYSEN N, BOCK S, FLIEDNER M. Scheduling of inventory releasing jobs to satisfy time-varying demand:an analysis of complexity[J]. Journal of Scheduling, 2013, 16(2):185-198.
[7] LUO J, WU Y. Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals[J]. Transportation Research Part E:Logistics and Transportation Review, 2015, 79:49-64.
[8] ZHENG K, TANG D, GU W, et al. Distributed control of multi-AGV system based on regional control model[J]. Production Engineering, 2013, 7(4):433-441.
[9] RAO R V, PATEL V. An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems[J]. Scientia Iranica, 2013, 20(3):710-720.
[10] SELS V, COELHO J, DIAS A M, et al. Hybrid tabu search and a truncated branch-and-bound for the unrelated parallel machine scheduling problem[J]. Computers and Operations Research, 2015, 53:107-117.
[11] PAREJO J A, RUIZ-CORTÉS A, LOZANO S, et al. Metaheuristic optimization frameworks:a survey and benchmarking[J]. Soft Computing, 2012, 16(3):527-561.
[12] BEHNAMIAN J. Particle swarm optimization-based algorithm for fuzzy parallel machine scheduling[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(5-8):883-895.
[13] ZHANG R, SONG S, WU C. A hybrid artificial bee colony algorithm for the job shop scheduling problem[J]. International Journal of Production Economics, 2013, 141(1):167-178.
[14] RAO Y Q, WANG M C, WANG K P, et al. Scheduling a single vehicle in the just-in-time part supply for a mixed-model assembly line[J]. Computers and Operations Research, 2013, 40(11):2599-2610.

[1] 代风, 翟翔, 施国强, 杜臣勇. 面向航天产品研制的知识网络本体建模方法[J]. 浙江大学学报(工学版), 2018, 52(10): 2023-2034.