Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (8): 1482-1488    DOI: 10.3785/j.issn.1008-973X.2018.08.007
航空航天技术     
基于T分布变分贝叶斯滤波的SINS/GPS组合导航
胡淼淼1, 敬忠良1, 董鹏1, 周贵荣2, 郑智明2
1. 上海交通大学 航空航天学院, 上海 200240;
2. 上海飞机设计研究院, 上海 200436
Variational Bayesian filtering based on Student-t distribution for SINS/GPS integrated navigation
HU Miao-miao1, JING Zhong-liang1, DONG Peng1, ZHOU Gui-rong2, ZHENG Zhi-ming2
1. College of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Shanghai Aircraft Design and Research Institute, Shanghai 200436, China
 全文: PDF(1209 KB)   HTML
摘要:

为了解决组合导航中由于野值存在而导致传统滤波算法性能下降的问题,针对SINS/GPS组合导航系统模型提出基于T分布的变分贝叶斯高斯滤波算法,充分考虑野值所导致的噪声厚尾特性,将观测噪声建模为T分布.对系统状态和自举变量进行估计,并且在每个滤波时刻借助变分贝叶斯学习对状态估计进行迭代,以逼近真实后验分布.针对噪声存在野值的场景进行仿真验证,结果表明,在SINS/GPS组合导航系统中,当噪声存在野值时,基于T分布的变分贝叶斯组合导航滤波方法具有一定的鲁棒性,并且精度优于传统组合导航滤波方法.

Abstract:

In order to resolve the problem of performance degradation caused by the outliers in the traditional filtering methods, a variational Bayesian Gaussian filtering (VBGF) algorithm based on Student-t distribution was proposed for SINS/GPS integrated navigation model. The proposed algorithm took full account of the characteristics of the heavy-tailedness caused by outliers, and the measurement noise was modeled as Student-t distribution. State variables were estimated with latent variables, and the estimation was iterated at each time to approximate the real joint posterior distribution of state and latent variables using the variational Bayesian learning. The results of simulation with outliers show that the proposed filtering algorithm is robust with outliers to a certain degree and reaches a higher precision than the traditional methods in the SINS/GPS integrated navigation system.

收稿日期: 2017-09-14 出版日期: 2018-08-23
CLC:  V249  
基金资助:

国家自然科学基金资助项目(61673262);上海市“科技创新行动计划”基础研究领域项目(16JC1401100)

通讯作者: 敬忠良,男,教授.orcid.org/0000-0003-1759-8785.     E-mail: zljing@sjtu.edu.cn
作者简介: 胡淼淼(1993-),女,硕士生,从事信息融合的研究.orcid.org/0000-0002-6639-7691.E-mail:humiao@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

胡淼淼, 敬忠良, 董鹏, 周贵荣, 郑智明. 基于T分布变分贝叶斯滤波的SINS/GPS组合导航[J]. 浙江大学学报(工学版), 2018, 52(8): 1482-1488.

HU Miao-miao, JING Zhong-liang, DONG Peng, ZHOU Gui-rong, ZHENG Zhi-ming. Variational Bayesian filtering based on Student-t distribution for SINS/GPS integrated navigation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1482-1488.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.007        http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1482

[1] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安:西北工业大学出版社, 2015:3-4
[2] DENG Z, ZHANG P, QI W, et al. Sequential covariance intersection fusion Kalman filter[J]. Information Sciences, 2012, 189:293-309.
[3] GAO J B, HARRIS C J. Some remarks on Kalman filters for the multisensor fusion[J]. Information Fusion, 2002, 3(3):191-201.
[4] HEWER G A, MARTIN R D, ZEH J. Robust preprocessing for Kalman filtering of glint noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987(1):120-128.
[5] BEAL M J. Variational algorithms for approximate Bayesian inference[M]. London:University of London, 2003:53-70
[6] ATTIAS H. Inferring parameters and structure of latent variable models by variational Bayes[C]//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. San Francisco:Morgan Kaufmann Publishers Inc., 1999:21-30
[7] 沈忱, 徐定杰, 沈锋, 等. GPS/INS组合导航的变分贝叶斯自适应卡尔曼滤波[J]. 哈尔滨工业大学学报, 2014, 46(5):59-65 SHEN Chen, XU Ding-jie, SHEN Feng, et al. Variational Bayesian adaptive Kalman filtering for GPS/INS integrated navigation[J]. Journal of Harbin Institute of Technology, 2014, 46(5):59-65
[8] SARKKA S, NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3):596-600.
[9] DONG P, JING Z, LEUNG H, et al. Variational Bayesian adaptive cubature information filter based on wishart distribution[J]. IEEE Transactions on Automatic Control, 2017, 62(11):6051-6057.
[10] LI K, CHAGN L, HU B. A variational Bayesian-based unscented Kalman filter with both adaptivity and robu stness[J]. IEEE Sensors Journal, 2016, 16(18):6966-6976.
[11] MOHAMMED B, TOUFIK B. Joint variational Bayesian extended Kalman filter for the estimation of the metabolic/hemodynamic model[C]//20154th International Conference on Electrical Engineering (ICEE). Boumerdes:IEEE, 2015:1-6
[12] FENG P, WANG W, NAQVI S M, et al. Variational Bayesian PHD filter with deep learning network updating for multiple human tracking[C]//2015 Sensor Signal Processing for Defence (SSPD). Edinburgh:IEEE, 2015:1-5
[13] 沈锋, 徐广辉, 桑靖. 一种自适应变分贝叶斯容积卡尔曼滤波方法[J]. 电机与控制学报, 2015, 19(4):94-99 SHEN Feng, XU Guang-hui, SANG Jing. Adaptive variational Bayesian cubature Kalman filtering[J]. Electric Machines and Control, 2015, 19(4):94-99
[14] 徐定杰, 沈忱, 沈锋. 混合高斯分布的变分贝叶斯学习参数估计[J]. 上海交通大学学报, 2013, 47(7):1119-1125 XU Ding-jie, SHEN Chen, SHEN Feng. Variational Bayesian learning for parameter estimation of mixture of Gaussians[J]. Journal of Shanghai Jiao Tong University, 2013, 47(7):1119-1125
[15] 陈金广, 李洁, 高新波. 双重迭代变分贝叶斯自适应卡尔曼滤波算法[J]. 电子科技大学学报, 2012, 41(3):359-363 CHEN Jin-guang, LI Jie, GAO Xin-bo. Dual recursive variational Bayesian adaptive Kalman filtering algorithm [J]. Journal of University of Electronic Science and Technology of China, 2012, 41(3):359-363
[16] 郝燕玲, 张召友. 基于VB-UKF的SINS/GPS自适应融合技术[J]. 华中科技大学学报:自然科学版, 2012, 40(1):54-57 HAO Yan-ling, ZHANG Zhao-you. Adaptive fusion technology for SINS/GPS based on VB-UKF[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2012, 40(1):54-57
[17] LI Q, SUN F. Strong tracking cubature Kalman filter algorithm for GPS/INS integrated navigation system[C]//2013 IEEE International Conference on Mechatronics and Automation. Takamatsu:IEEE, 2013:1113-1117
[18] 徐健, 宋晓萍, 张宏瀚, 等. 基于变分贝叶斯的DR/UTP组合导航滤波方法[J]. 仪器仪表学报, 2016, 37(12):2743-2749 XU Jian, SONG Xiao-ping, ZHANG Hong-han, et al. DR/UTP integrated navigation based on variational Bayes[J]. Chinese Journal of Scientific Instrument, 2016, 37(12):2743-2749
[19] ZHU H, LEUNG H, HE Z. A variational Bayesian approach to robust sensor fusion based on Student-t distribution[J]. Information Sciences, 2013, 221:201-214.
[20] PICHE R, SARKKA S, HARTIKAINEN J. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate Student-t distribution[C]//2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander:IEEE, 2012:1-6

[1] 丁强, 陶伟明. 多无人机协同四维航迹规划的改进的Tau-H策略[J]. 浙江大学学报(工学版), 2018, 52(7): 1398-1405.
[2] 侯鑫, 李平, 韩波, 等. 小型无人直升机分层混杂控制系统[J]. J4, 2009, 43(5): 796-800.