[1] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安:西北工业大学出版社, 2015:3-4
[2] DENG Z, ZHANG P, QI W, et al. Sequential covariance intersection fusion Kalman filter[J]. Information Sciences, 2012, 189:293-309.
[3] GAO J B, HARRIS C J. Some remarks on Kalman filters for the multisensor fusion[J]. Information Fusion, 2002, 3(3):191-201.
[4] HEWER G A, MARTIN R D, ZEH J. Robust preprocessing for Kalman filtering of glint noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987(1):120-128.
[5] BEAL M J. Variational algorithms for approximate Bayesian inference[M]. London:University of London, 2003:53-70
[6] ATTIAS H. Inferring parameters and structure of latent variable models by variational Bayes[C]//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. San Francisco:Morgan Kaufmann Publishers Inc., 1999:21-30
[7] 沈忱, 徐定杰, 沈锋, 等. GPS/INS组合导航的变分贝叶斯自适应卡尔曼滤波[J]. 哈尔滨工业大学学报, 2014, 46(5):59-65 SHEN Chen, XU Ding-jie, SHEN Feng, et al. Variational Bayesian adaptive Kalman filtering for GPS/INS integrated navigation[J]. Journal of Harbin Institute of Technology, 2014, 46(5):59-65
[8] SARKKA S, NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3):596-600.
[9] DONG P, JING Z, LEUNG H, et al. Variational Bayesian adaptive cubature information filter based on wishart distribution[J]. IEEE Transactions on Automatic Control, 2017, 62(11):6051-6057.
[10] LI K, CHAGN L, HU B. A variational Bayesian-based unscented Kalman filter with both adaptivity and robu stness[J]. IEEE Sensors Journal, 2016, 16(18):6966-6976.
[11] MOHAMMED B, TOUFIK B. Joint variational Bayesian extended Kalman filter for the estimation of the metabolic/hemodynamic model[C]//20154th International Conference on Electrical Engineering (ICEE). Boumerdes:IEEE, 2015:1-6
[12] FENG P, WANG W, NAQVI S M, et al. Variational Bayesian PHD filter with deep learning network updating for multiple human tracking[C]//2015 Sensor Signal Processing for Defence (SSPD). Edinburgh:IEEE, 2015:1-5
[13] 沈锋, 徐广辉, 桑靖. 一种自适应变分贝叶斯容积卡尔曼滤波方法[J]. 电机与控制学报, 2015, 19(4):94-99 SHEN Feng, XU Guang-hui, SANG Jing. Adaptive variational Bayesian cubature Kalman filtering[J]. Electric Machines and Control, 2015, 19(4):94-99
[14] 徐定杰, 沈忱, 沈锋. 混合高斯分布的变分贝叶斯学习参数估计[J]. 上海交通大学学报, 2013, 47(7):1119-1125 XU Ding-jie, SHEN Chen, SHEN Feng. Variational Bayesian learning for parameter estimation of mixture of Gaussians[J]. Journal of Shanghai Jiao Tong University, 2013, 47(7):1119-1125
[15] 陈金广, 李洁, 高新波. 双重迭代变分贝叶斯自适应卡尔曼滤波算法[J]. 电子科技大学学报, 2012, 41(3):359-363 CHEN Jin-guang, LI Jie, GAO Xin-bo. Dual recursive variational Bayesian adaptive Kalman filtering algorithm [J]. Journal of University of Electronic Science and Technology of China, 2012, 41(3):359-363
[16] 郝燕玲, 张召友. 基于VB-UKF的SINS/GPS自适应融合技术[J]. 华中科技大学学报:自然科学版, 2012, 40(1):54-57 HAO Yan-ling, ZHANG Zhao-you. Adaptive fusion technology for SINS/GPS based on VB-UKF[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2012, 40(1):54-57
[17] LI Q, SUN F. Strong tracking cubature Kalman filter algorithm for GPS/INS integrated navigation system[C]//2013 IEEE International Conference on Mechatronics and Automation. Takamatsu:IEEE, 2013:1113-1117
[18] 徐健, 宋晓萍, 张宏瀚, 等. 基于变分贝叶斯的DR/UTP组合导航滤波方法[J]. 仪器仪表学报, 2016, 37(12):2743-2749 XU Jian, SONG Xiao-ping, ZHANG Hong-han, et al. DR/UTP integrated navigation based on variational Bayes[J]. Chinese Journal of Scientific Instrument, 2016, 37(12):2743-2749
[19] ZHU H, LEUNG H, HE Z. A variational Bayesian approach to robust sensor fusion based on Student-t distribution[J]. Information Sciences, 2013, 221:201-214.
[20] PICHE R, SARKKA S, HARTIKAINEN J. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate Student-t distribution[C]//2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander:IEEE, 2012:1-6 |