Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1329-1337    DOI: 10.3785/j.issn.1008-973X.2018.07.013
土木工程、交通工程     
局部约束模式对单颗粒破碎强度的影响
邓璇璇, 马刚, 周伟, 常晓林
武汉大学 水资源与水电工程科学国家重点实验室, 水工岩石力学教育部重点实验室, 湖北 武汉 430072
Effects of local constraints patterns on fragmentation of single grain
DENG Xuan-xuan, MA Gang, ZHOU Wei, CHANG Xiao-lin
State Key Laboratory of Water Resources and Hydropower Engineering Science, Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan 430072, China
 全文: PDF(2843 KB)   HTML
摘要:

为了研究不同约束模式对单颗粒破碎的影响,通过改变颗粒的接触状态(接触点个数、接触角度)设计一系列约束模式.对描述颗粒接触状态的二维矩阵进行奇异值分解(SVD),得到量化颗粒约束状态的特征值.基于Voronoi图生成试样的随机不规则网格,在连续-离散耦合分析方法(FDEM)的基础上建立颗粒模型,研究颗粒的破碎强度和破碎形式与约束模式之间的关系,建立考虑颗粒约束模式的破碎阈值模型.通过大量的数值模拟结果可以看出,在颗粒破碎过程中,靠近竖直加载轴线的约束部位出现初始裂纹,并逐渐发展成为宏观贯穿裂缝,继而圆周侧向约束部位出现向顶部或底部约束部位扩展的裂纹.颗粒接触点或者配位数越多,SVD分解得到的平均奇异值越大,颗粒破碎阈值越高.在接触点或者配位数相同的情况下,约束模式对应的平均奇异值越高或偏状态程度越低,颗粒抵抗破碎的能力越强.

Abstract:

A series of constraint modes were designed by changing the contact state of the particle, including the coordination number and contact position, in order to analyze the effects of local constraints patterns on fragmentation of single grain. The singular value decomposition (SVD) was applied to the two-dimensional matrix representing the contact state of particles, and the obtained singular values could make the constraint modes quantified. The mesh topology based on Voronoi diagram was applied to simulate the heterogeneous structure of particles. Plenty of numerical simulations of two-dimensional particle crushing was conducted by using the combined finite-discrete element method (FDEM) in order to reveal the effects of constraint modes on the failure strength and the crushing forms. The fragmentation threshold model was constructed. The numerical results show that during particle crushing, initial cracks appear near the loading axis and ultimately splitting the specimen. Other cracks originate from lateral contacts and generally reach the top or bottom contact. Higher mean singular value and enhanced critical force are resulted with increasing coordination number. With the same coordination number, the fragmentation threshold of grains gets higher as the mean singular value increases or the difference between the singular values decreases.

收稿日期: 2017-03-30 出版日期: 2018-06-26
CLC:  TV641  
基金资助:

国家重点研发计划资助项目(2016YFC0401909);国家自然科学基金青年基金资助项目(51509190);中国博士后科学基金特别资助项目(2016T907272).

通讯作者: 马刚,男,副教授.orcid.org/0000-0002-1865-5721.     E-mail: magang630@whu.edu.cn
作者简介: 邓璇璇(1994-),女,硕士生,从事高坝结构数值仿真的研究.orcid.org/0000-0003-2072-8966.E-mail:dengxuanxuan@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

邓璇璇, 马刚, 周伟, 常晓林. 局部约束模式对单颗粒破碎强度的影响[J]. 浙江大学学报(工学版), 2018, 52(7): 1329-1337.

DENG Xuan-xuan, MA Gang, ZHOU Wei, CHANG Xiao-lin. Effects of local constraints patterns on fragmentation of single grain. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1329-1337.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.013        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1329

[1] AURSUDKIJ B. A laboratory study of railway ballast behaviour under traffic loading and tamping maintenance[D]. Nottingham:University of Nottingham, 2007.
[2] CAVARRETTA I, COOP M, O'SULLIVAN C. The influence of particle characteristics on the behaviour of coarse grained soils[J]. Géotechnique, 2010, 60(6):413-423.
[3] MCDOWELL G R, HARIRECHE O. Discrete element modelling of soil particle fracture[J]. Géotechnique, 2002, 52(2):131-136.
[4] LIM W L, MCDOWELL G R. The importance of coordination number in using agglomerates to simulate crushable particles in the discrete element method[J]. Géotechnique, 2007, 57(8):701-705.
[5] TSOUNGUI O, VALLET D, CHARMET J C. Use of contact area trace to study the force distributions inside 2D granular systems[J]. Granular Matter, 1998, 1(2):65-69.
[6] TSOUNGUI O, VALLET D, CHARMET J C, et al. Size effects in single grain fragmentation[J]. Granular Matter, 1999, 2(1):19-27.
[7] SUKUMARAN B, EINAV I, DYSKIN A. Qualitative assessment of the influence of coordination number on crushing strength using DEM[C]//2006 AIChE Annual Meeting. San Francisco:[s. n.], 2006.
[8] BENNUN O, EINAV I. The role of self-organization during confined comminution of granular materials[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2010, 368(1910):231-247.
[9] SALAMI Y, DANO C, HICHER P Y, et al. The effects of the coordination on the fragmentation of a single grain[C]//Proceedings of ISGG. Warwick:IOP, 2015, 26(1):012015.
[10] WANG P, ARSON C. Discrete element modeling of shielding and size effects during single particle crushing[J]. Computers and Geotechnics, 2016, 78:227-236.
[11] 常晓林, 胡超, 马刚, 等. 模拟岩体失效全过程的连续-非连续变形体离散元方法及应用[J]. 岩石力学与工程学报, 2011, 30(10):2004-2011. CHANG Xiao-lin, HU Chao, MA Gang, et al. Continuous-discontinuous deformable discrete element method to simulate the whole failure process of rock masses and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10):2004-2011.
[12] 焦玉勇, 张秀丽, 刘泉声, 等. 用非连续变形分析方法模拟岩石裂纹扩展[J]. 岩石力学与工程学报, 2007, 26(4):682-691. JIAO Yu-yong, ZHANG Xiu-li, LIU Quan-sheng, et al. Simulation of rock crack propagation using discontinuous deformation analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4):682-691.
[13] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1329-1364.
[14] MUNJIZA A, BANGASH T, JOHN N W M. The combined finite-discrete element method for structural failure and collapse[J]. Engineering Fracture Mechanics, 2004, 71(4):469-483.
[15] MA G, ZHOU W, NG T T, et al. Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model[J]. Acta Geotechnica, 2015, 10(4):481-496.
[16] MA G, ZHOU W, CHANG X L. Modeling the particle breakage of rockfill materials with the cohesive crack model[J]. Computers and Geotechnics, 2014,61(61):132-143.
[17] MA G, ZHOU W, REGUEIRO R A, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308:388-397.
[18] SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006, 73(18):2829-2848.
[19] ROE K L, SIEGMUND T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003,70(2):209-232.
[20] KLEIBERGEN F, PAAP R. Generalized reduced rank tests using the singular value decomposition[J]. Journal of Econometrics, 2006, 133(1):97-126.
[21] LANGE K. Numerical analysis for statisticians[M]. New York:Springer, 2010:129-142.
[22] 蒋卓芸,夏雪.奇异值分解及其简单应用[J].成都大学学报:自然科学版,2015,34(4):364-366. JIANG Zhuo-yun, XIA Xue. Singular value decomposition and it's simple application[J]. Journal ofChengdu University:Natural Science Edition, 2015,34(4):364-366.
[23] 罗小桂,何雁.矩阵奇异值分解在计算技术中的应用[J].计算机与现代化,2006(6):67-68. LUO Xiao-gui, HE Yan. Application of matrix singular value decomposition (SVD) in computing technologies[J]. Computer and Modernization, 2006(6):67-68.
[24] 邓勇.矩阵奇异值分解的几何意义[J].喀什师范学院学报,2012, 33(3):8-10. DENG Yong. Geometrical significance on singular value decomposition of matrix[J]. Journal of Kashgar Teachers College, 2012, 33(3):8-10.
[25] SMITH L I. A tutorial on principal components analysis[J]. Information Fusion, 2002, 51(52):65.
[26] WALL M E, RECHTSTEINER A, ROCHA L M. Singular value decomposition and principal component analysis[M]//BERRAR D P, DUBITZKY W, GRANZOW M, et al. A practical approach to microarray data analysis. New York:Kluwer, 2003:91-109.
[27] KAZERANI T. Effect of micromechanical parameters of microstructure on compressive and tensile failure process of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64(6):44-55.
[28] ZHOU W, YUAN W, MA G, et al. Combined finite-discrete element method modeling of rockslides[J]. Engineering Computations, 2016, 33(5):1530-1559.

[1] 陈楷, 邹德高, 孔宪京, 刘京茂. 多边形比例边界有限单元非线性化方法及应用[J]. 浙江大学学报(工学版), 2017, 51(10): 1996-2004.
[2] 余翔, 孔宪京, 邹德高. 混凝土防渗墙变形与应力分布特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1704-1711.