Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1310-1319    DOI: 10.3785/j.issn.1008-973X.2018.07.011
土木工程、交通工程     
基于曲率延性的弯曲型结构地震作用折减系数
李天翔, 童根树, 张磊
浙江大学 土木工程系, 浙江 杭州 310058
Curvature ductility-based seismic force reduction factor of flexure-type structure
LI Tian-xiang, TONG Gen-shu, ZHANG Lei
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(3818 KB)   HTML
摘要:

采用基于曲率延性的非线性动力分析方法,研究弯曲型结构的地震作用折减系数.引入地震作用名义作用高度,在多自由度体系的基底剪力和基底弯矩间建立起有效联系.为了保留谱线峰值特征,采用双特征周期对地震作用折减系数谱进行标准化处理.通过300 000余组非线性动力分析,研究结构自振周期、曲率延性、刚度沿结构高度分布和上层结构延性开展等因素对弯曲型结构地震作用折减系数的影响.采用3种不同工况,分析二阶振型对地震作用折减系数的影响,提出弯曲型地震作用折减系数及二阶振型影响系数的简化计算公式,建立曲率延性与位移延性的定量相关关系.

Abstract:

A curvature ductility-based nonlinear dynamic analysis procedure was developed to analyze the seismic force reduction factor of flexure-type building. A nominal height of base shear was defined to provide an effective link between base shear and base moment for multi-story flexure-type building. Two site-specific characteristic periods were utilized to normalize the abscissa of the reduction factor spectra to retain their peak features. The influence of structural fundamental period, curvature ductility, stiffness distribution over structural height and upper-story inelasticity etc. on the reduction factor was analyzed via over 300,000 nonlinear analyses. The effect of the second vibration mode on the reduction factor was analyzed by three cases. Simplified formulas for the seismic force reduction factor of flexure-type building and the corresponding modification factor due to the second vibration mode were proposed respectively for practical application. The quantitative relation between curvature ductility and drift ductility was discussed.

收稿日期: 2017-11-28 出版日期: 2018-06-26
CLC:  TU352  
基金资助:

国家自然科学基金资助项目(51078328).

通讯作者: 童根树,男,教授.orcid.org/0000-0002-3985-8429.     E-mail: tonggs@zju.edu.cn
作者简介: 李天翔(1990-),男,博士生,从事钢结构抗震研究.orcid.org/0000-0002-5074-3975.E-mail:zjultx@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

李天翔, 童根树, 张磊. 基于曲率延性的弯曲型结构地震作用折减系数[J]. 浙江大学学报(工学版), 2018, 52(7): 1310-1319.

LI Tian-xiang, TONG Gen-shu, ZHANG Lei. Curvature ductility-based seismic force reduction factor of flexure-type structure. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1310-1319.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.011        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1310

[1] MIRANDA E. Evaluation of site-dependent sinelastic seismic design spectra[J]. Journal of Structural Engineering, 1993, 119(5):1319-1338.
[2] LEE L H, HAN S W, OH Y H. Determination of ductility factor considering different hysteretic models[J]. Earthquake Engineering and Structural Dynamics, 1999, 28(9):957-977.
[3] 赵永峰, 童根树. 剪切滑移滞回模型的结构影响系数[J]. 工程力学, 2009, 26(4):73-81. ZHAO Yong-feng, TONG Gen-shu. Seismic force modification factors for structures with shear-slip hysteretic model[J]. Engineering Mechanics, 2009, 26(4):73-81.
[4] NEHRP FEMA P695.Quantification of building seismic performance factors[S]. Washington D.C.:FEMA, 2009.
[5] PEER/ATC-72-1.Modeling and acceptance criteria for seismic design and analysis of tall buildings[S]. Redwood City, CA:Applied Technology Council, 2010.
[6] 童根树, 叶赟, 张磊. 3种理想化滞回模型下的弹塑性反应谱对比[J]. 浙江大学学报:工学版, 2014, 48(04):693-703. TONG Gen-shu, YE Yun, ZHANG Lei. Comparative study on elastic-plastic response spectra of three idealized hysteretic models[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(04):693-703.
[7] ZHAI C H, WEN W P, LI S, et al. The ductility-based strength reduction factor for the main shock-aftershock sequence-type ground motions[J]. Bulletin of Earthquake Engineering, 2015, 13(10):2893-2914.
[8] TONG G, ZHAO Y. Seismic force modification factors for modified-Clough hysteretic model[J].Engineering Structures, 2007; 29(11):3053-3070.
[9] MIRANDA E, BERTERO VV. Evaluation of strength reduction factors for earthquake-resistant design[J].Earthquake Spectra, 1994, 10(2):357-379.
[10] FARROW K T, KURAMA Y C. SDOF demand index relationships for performance-based seismic design[J]. Earthquake Spectra, 2003, 19(4):799-838.
[11] ZHAO Y, TONG G. An investigation of characteristic periods of seismic ground motions[J].Journal of Earthquake Engineering, 2009, 13(4):540-565.
[12] NEWMARK N M, HALL W J. Earthquake spectra and design[R]. Berkeley:Earthquake Engineering Research Institute, 1982.
[13] NASSAR A A, KRAWINKLER H. Seismic demands for SDOF and MDOF systems[R]. Palo Alto:John A. Blume Earthquake Engineering Center, 1991.
[14] 童根树, 赵永峰. 动力P-Δ效应对地震作用折减系数的影响[J]. 浙江大学学报:工学版, 2007, 41(1):120-125. TONG Gen-shu, ZHAO Yong-feng. Dynamic P-Δ effects on seismic force modification factors[J]. Journal of Zhejiang University:Engineering Science, 2007, 41(1):120-125.
[15] VELETSOS A S, VANN W P. Response of ground-excited elastoplastic systems[J]. Journal of the Structural Division, 1971, 97(4):1257-1281.
[16] CAI J, BU G, ZHOU J, et al. Modification ofductility reduction factor for strength eccentric structures subjected to pulse-like ground motions[J]. Journal of Earthquake Engineering, 2016, 20(1):12-38.
[17] GANJAVI B, HAO H. Strength reduction factor for MDOF soil-structure systems[J].Structural Design of Tall and Special Buildings, 2014, 23(3):161-180.
[18] LU Y, HAJIRASOULIHA I, MARSHALL A M. Performance-based seismic design of flexible-base multi-storey buildings considering soil-structure interaction[J]. Engineering Structures, 2016, 108:90-103.
[19] MOGHADDAM H, MOHAMMADI R K. Ductility reduction factor of MDOF shear-building structures[J]. Journal of Earthquake Engineering, 2001, 5(03):425-440.
[20] SANTA-ANA P R, MIRANDA E. Strengthreduction factors for multi-degree-of-freedom systems[C]//Proceedings of 12th World Conference of Earthquake Engineering. Auckland:IAEE, 2000.
[21] 蔡志恒. 双周期标准化的弹塑性反应谱研究[D]. 杭州:浙江大学, 2011. CAI Zhi-heng. Inelastic spectra normalized by two characteristic periods[D]. Hangzhou:Zhejiang University, 2011.
[22] SENEVIRATNA G D P K, KRAWINKLER H. Evaluation of inelastic MDOF effects for seismic design[R]. Palo Alto:John A. Blume Earthquake Engineering Center, 1997.
[23] ASCE 7.Minimum design loads for buildings and other structures[S]. Reston, VA:ASCE, 2010.
[24] CHOPRA A K. Dynamics of Structures:theory and applications to earthquake engineering[M]. 5th ed. Upper Saddle River:Pearson, 2017.
[25] LOI F T, GRUNDY P. Cyclic moment-curvature characteristics of mild steel[J]. Matériaux et Construction, 1980, 13(5):371-382.
[26] VELETSOS A S, NEWMARK N M. Effect of inelastic behavior on the response of simple systems to earthquake motions[C]//Proceedings of the 2nd World Conference on Earthquake Engineering. Tokyo:WCEE, 1960:895-912.
[27] VELETSOS A S, NEWMARK N M, CHEPALATI C V. Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motion[C]//Proceedings of the 3rd World Conference on Earthquake Engineering. Auckland:WCEE, 1965:663-682.

[1] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.