Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 761-768    DOI: 10.3785/j.issn.1008-973X.2018.04.020
化学工程,能源与环境工程     
分配比对分段进水A2/O工艺脱氮除磷的影响
徐宇峰1,2, 王让2, 唐锋兵1,2, 林佳琪1,2, 张炜1,2, 李思敏1,2
1. 河北工程大学 河北省水污染控制与水生态修复工程技术研究中心, 河北 邯郸 056038;
2. 河北工程大学 能源与环境工程学院, 河北 邯郸 056038
Affection of distribution ratio of influent on nitrogen and phosphorus removal of step feed-A2/O process
XU Yu-feng1,2, WANG Rang2, TANG Feng-bing1,2, LIN Jia-qi1,2, ZHANG Wei1,2, LI Si-min1,2
1. Hebei Engineering Research Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, China;
2. College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
 全文: PDF(2292 KB)   HTML
摘要:

以低C/N实际污水为研究对象,研究进水分配比对分段进水A2/O工艺脱氮除磷性能的影响.以稳态条件下建立的物料平衡方程为基础,分析进水分配比对处理过程的影响.结果表明,分段进水A2/O工艺平均出水CODCr和NH3-N质量浓度基本维持为25.6~41.2 mg/L和0.35~1.40 mg/L,出水水质较稳定;出水TN、TP受进水分配比的影响明显.根据已建立的物料平衡方程分析发现,当进水分配比由6∶3降低至3∶6时,缺氧单元反硝化脱氮贡献率由36.95%升至83.47%,厌氧单元反硝化脱氮贡献率由43.81%降至12.30%,好氧单元同步硝化反硝化脱氮贡献率由19.24%降至4.23%,缺氧单元反硝化成为去除TN的主要途径,TN总体去除率升高9.95%;缺氧单元缺氧聚磷除磷贡献率由5.20%升至13.00%,好氧单元好氧聚磷除磷贡献率由94.80%降低至87.00%,好氧聚磷为去除TP的主要途径,但TP总体去除率降低5.37%.

Abstract:

The low-C/N municipal wastewater was taken as the research object, and the influence of influent distribution ratio on nitrogen and phosphorus removal in A2/O step feed process was analyzed. The influence of influent distribution ratio on the treating process was analyzed based on the material balance equations established under steady-state conditions. Results showed that the average effluent mass concentrations of CODCr and NH3-N were maintained at 25.6-41.2 mg/L and 0.35-1.40 mg/L respectively, which were stable. The average effluent concentrations of TN and TP were obviously affected. The established material balance equations were analyzed. While the distribution ratio of influent was decreased from 6:3 to 3:6, the contribution rate of the denitrification in anoxia unit was increased from 36.95% to 83.47%, which in anaerobic unit was decreased from 43.81% to 12.30%, and the contribution rate of the simultaneous nitrification and denitrification in aerobic unit was decreased from 19.24% to 4.23%. The anaerobic denitrification became the main way to remove TN, and the general removal efficiency of TN was increased by 9.95%. The contribution rate of dephosphatation in anoxia unit was increased from 5.20% to 13.00%, which in aerobic unit was decreased from 94.80% to 87.00%. The aerobic dephosphatation was the main way to remove TP, and the general removal efficiency of TP was decreased by 5.37%.

收稿日期: 2017-08-20
CLC:  TU998  
基金资助:

国家自然科学基金资助项目(51508149);河北省自然基金资助项目(E2014402101);国家水体污染控制与治理科技重大专项资助项目(2012ZX07203-003);河北省应用基础研究计划重点基础研究资助项目(12966738D).

通讯作者: 李思敏,男,博士,教授.orcid.org/0000-0002-3225-3390.     E-mail: cheyli@126.com
作者简介: 徐宇峰(1984-),男,博士,从事污染控制研究.orcid.org/0000-0001-9788-6079.E-mail:jackstarfly@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

徐宇峰, 王让, 唐锋兵, 林佳琪, 张炜, 李思敏. 分配比对分段进水A2/O工艺脱氮除磷的影响[J]. 浙江大学学报(工学版), 2018, 52(4): 761-768.

XU Yu-feng, WANG Rang, TANG Feng-bing, LIN Jia-qi, ZHANG Wei, LI Si-min. Affection of distribution ratio of influent on nitrogen and phosphorus removal of step feed-A2/O process. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 761-768.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.020        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/761

[1] HE Q, SONG Q, ZHANG S, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources:reactor performance, extracellular polymeric substances and microbial successions[J]. Chemical Engineering Journal, 2018, 331(1):841-849.
[2] 余鸿婷, 李敏. 反硝化聚磷菌的脱氮除磷机制及其在废水处理中的应用[J]. 微生物学报, 2015, 55(03):264-272. YU Hong-ting, LI Min. Denitrifying and phosphorus accumulating mechanisms of denitrifying phosphorus accumulating organisms (DPAOs) for wastewater treatment[J]. Acta Microbiologica Sinica, 2015, 55(03):264-272.
[3] 朱文玲, 郑离妮, 崔理华, 等. 不同碳氮比条件下4种可控因素对垂直流人工湿地总氮去除的影响[J]. 农业环境科学学报, 2010, 29(06):1187-1192. ZHU Wen-ling, ZHENG Li-ni, CUI Li-hua, et al. Vertical-flow constructed wetland de-nitrification impact of four controllable factors with different C/N[J]. Journal of Agro-Environment Science, 2010, 29(06):1187-1192.
[4] ZHANG S, HUANG Z, LU S, et al.Nutrients removal and bacterial community structure for low C/N municipal wastewater using a modified anaerobic/anoxic/oxic (mA2/O) process in North China[J]. Bioresource Technology, 2017, 243:975-985.
[5] CHAN C, GUISASOLA A, BAEZA J A. Enhanced biological phosphorus removal at low sludge retention time in view of its integration in A-stage systems[J]. Water Research, 2017, 118:217-226.
[6] CHEN X, FUJIWARA T, NAKAMACHI K, et al. Evaluation of a novel oxidation ditch system with dual DO control technology for biological nutrient removal by mass balance analysis[J]. Desalination, 2012, 286(1):24-33.
[7] LIU G, WANG J.Enhanced removal of total nitrogen and total phosphorus by applying intermittent aeration to the modified Ludzack-Ettinger (MLE) process[J]. Journal of Cleaner Production, 2017, 166:163-171.
[8] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002:210-281.
[9] 李彬, 王志伟, 安莹, 等. 盐度对膜-生物反应器污泥表观硝化速率的抑制机理[J]. 中国环境科学, 2014, 34(2):371-377. LI Bin, WANG Zhi-wei, AN Ying, et al. Inhibition mechanisms of apparent nitrification rate in membrane bio-reactor with salinity[J]. China Environmental Science, 2014, 34(2):371-377.
[10] 吴昌永, 彭永臻, 彭轶, 等. 碳源类型对A2O系统脱氮除磷的影响[J]. 环境科学, 2009, 30(3):798-802. WU Chang-yong, PENG Yong-zhen, PENG Yi, et al. Influence ofcarbon source on biological nutrient removal in A2O process[J]. Environmental Science, 2009, 30(3):798-802.
[11] LIU Q, WAN J, WANG J, et al. Recovery of phosphorus via harvesting phosphorus-accumulating granular sludge in sequencing batch airlift reactor[J]. Bioresource Technology, 2017, 224:87-93.
[12] EVINA K, TERESA A, SIMOS M, et al. Effects of selected pharmaceuticals on nitrogen and phosphorus removal bioprocesses[J]. Chemical Engineering Journal, 2016, 295:509-517.
[13] 张建华, 彭永臻, 张淼, 等. 不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J]. 化工学报, 2015, 66(12):5045-5053. ZHANG Jian-hua, PENG Yong-zhen, ZHANG Miao, et al. Effect of different electron acceptor ratios on removal of nitrogen and phosphorus and conversion and utilization of internal carbon source[J]. CIESC Journal, 2015, 66(12):5045-5053.
[14] 王聪, 王淑莹, 张淼, 等. 多因素对反硝化除磷过程中COD、N和P的去除分析[J]. 化工学报, 2015, 66(4):1467-1475. WANG Cong, WANG Shu-ying, ZHANG Miao, et al. Analysis of COD, N and P in denitrifying phosphorus removal under multivariate condition[J]. CIESC Journal, 2015, 66(4):1467-1475.
[15] 邱春生, 聂海伦, 孙力平, 等. 不同碳源条件下聚磷菌代谢特性[J]. 环境工程学报, 2014, 8(6):2191-2197. QIU Chun-sheng, NIE Hai-lun, SUN Li-ping, et al. Metabolic properties of phosphorus-accumulating organisms at different carbon sources[J]. Chinese Journal of Environmental Engineering, 2014, 8(6):2191-2197.
[16] ZHOU K, LIU H, SUN Y, et al. Denitrifying phosphorus accumulation characteristic of phosphorus accumulating bacteria at A2/O anaerobic stage[J]. Journal of Central South University, 2007, 38(4):645-651.
[17] 徐微, 吕锡武. 反硝化聚磷污泥厌氧释磷影响因素研究[J]. 安全与环境工程, 2009, 16(3):26-29. XU Wei, LV Xi-wu. Study on factors influencing the phosphorus release of denitrifying phosphorus removal sludge in anaerobic condition[J]. Safety and Environmental Engineering, 2009, 16(3):26-29.
[18] ZHANG S, HUANG Y, HUA Y. Denitrifying dephosphatation over nitrite:effects of nitrite concentration, organic carbon, and pH[J]. Bioresource Technology, 2010, 101(11):3870-3875.
[19] 张淼, 彭永臻, 王聪, 等. 三段式硝化型生物接触氧化反应器的启动及特性[J]. 中国环境科学, 2015, 35(1):101-109. ZHANG Miao, PENG Yong-zhen, WANG Cong, et al. The start-up and characterization of a three-stage nitrification biological contact oxidation reactor[J]. China Environmental Science, 2015, 35(1):101-109.
[20] ZHOU S, ZHANG X, FENG L. Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria[J]. Bioresource Technology, 2010, 101(6):1603-1610.

No related articles found!