Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 628-634    DOI: 10.3785/j.issn.1008-973X.2018.04.003
机械工程     
形状记忆合金丝驱动的柔性机械臂建模与实验
王扬威, 兰博文, 刘凯, 赵东标
南京航空航天大学 机电学院, 江苏 南京 210016
Modeling and experiment of flexible manipulator actuated by shape memory alloy wire
WANG Yang-wei, LAN Bo-wen, LIU Kai, ZHAO Dong-biao
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(5279 KB)   HTML
摘要:

针对传统机械臂在水下特殊环境中柔性不能满足应用需求的问题,在分析章鱼腕生物学肌肉组织结构的基础上,设计形状记忆合金(SMA)丝驱动的柔性机械臂.建立柔性机械臂的力学模型、SMA丝的热力学模型和本构模型.通过实验研究不同驱动电压和脉宽调制(PWM)方波的占空比对SMA丝电阻和柔性机械臂弯曲角度的影响.实验结果表明,柔性机械臂能够实现连续的柔性弯曲运动,最大弯曲角度为60°,驱动电压、PWM占空比、SMA电阻和柔性机械臂弯曲角度关系的实验结果与理论分析结果吻合较好.

Abstract:

A flexible manipulator actuated by shape memory alloy (SMA) wires was designed based on the biological analysis of muscle structure in wrist of octopus in order to meet the requirement of the flexibility of robot manipulators when operated in complex underwater environment. The mechanical model of the flexible manipulator was constructed. Then the constitutive equation and the thermal model of embedded SMA wires were described. Actuating experiments were conducted on the influence of different driving voltages and duty ratio of pulse-width modulation (PWM) on the resistance of SMA wires and the bending angle of manipulator. The experimental results show that the flexible manipulator can complete continuous flexible bending motion with a maximum bending angle of 60 degree. Relationship between driving voltage, PWM ratio, resistance of SMA and the bending angle of flexible manipulator accorded with the theoretical analysis results.

收稿日期: 2017-10-13
CLC:  TP241  
基金资助:

江苏省自然科学基金资助项目(BK20171416);国家自然科学基金资助项目(51405229);中央高校基本科研业务费专项资金资助项目(NS2016055).

作者简介: 王扬威(1980-),男,博士,讲师,从事仿生机器人、机电一体化技术及智能装备的研究.orcid.org/0000-0003-2947-7024.E-mail:wywkly@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王扬威, 兰博文, 刘凯, 赵东标. 形状记忆合金丝驱动的柔性机械臂建模与实验[J]. 浙江大学学报(工学版), 2018, 52(4): 628-634.

WANG Yang-wei, LAN Bo-wen, LIU Kai, ZHAO Dong-biao. Modeling and experiment of flexible manipulator actuated by shape memory alloy wire. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 628-634.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.003        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/628

[1] JONES B A, MCMAHAN W, WALKER I. Design and analysis of a novel pneumatic manipulator[C]//Proceedings of 3rd IFAC Symposium on Mechatronic Systems. Sydney:IEEE, 2004:745-750.
[2] WILLIAM M, JONES B A, WALKER I D.Design and implementation of a multi-section continuum robot:air-octor[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton:IEEE, 2005:2578-2585.
[3] EMANUELE G, NIKOS T, DARWIN G C, et al. An octopus anatomy-inspired robotic arm[J]. International Conference on Intelligent Robots and Systems, 2010, 6219(1):3091-3096.
[4] SIMAAN N. Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona:IEEE, 2006:3012-3017.
[5] DEGANI A, CHOSET H, ZUBIATE B, et al. Highly articulated robotic probe for minimally invasive surgery[C]//International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver:IEEE, 2008:4167.
[6] GIORELLI M, RENDA F, CALISTI M, et al. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space[J]. Bioinspiration and Biomimetics, 2015, 10(3):035006.
[7] 胡海燕,王鹏飞,孙立宁,等. 线驱动连续型机器人的运动学分析与仿真[J]. 机械工程学报, 2010, 49(19):1-8. HU Hai-yan, WANG Peng-fei, SUN Li-ning, et al. Kinematic analysis and simulation for cable-driven continuum robot[J]. Journal of Mechanical Engineering, 2010, 49(19):1-8.
[8] VAVOURAKIS V, BAMPASAKIS D, KAZAKIDI A, et al. Generation of primitive behaviors for non-linear hyperelastic octopus-inspired robotic arm[C]//20124th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome:IEEE, 2012:725-730.
[9] CIANCHETTI M, LICOFONTE A, FOLLADOR M, et al. Bioinspired soft actuation system using shape memory alloys[J]. Actuators, 2014, 3(3):226-244.
[10] ZHENG T, YANG Y, DAVID T, et al. Controldesign of shape memory alloy based multi-arm continuum robot inspired by octopus[C]//2014 IEEE 9th Conference on Industrial Electronics and Applications. Hangzhou:IEEE, 2014:1108-1113.
[11] CIANCHETTI M, CALISTI M, MARGHERI L, et al. Bioinspired locomotion and grasping in water:the soft eight-arm OCTOPUS robot[J].Bioinspiration and Biomimetics, 2015, 10(035003):1-8.
[12] PEI Q, PELRINE R, STANFORD S, et al. Multifunctional electroelastomer rolls and their application for biomimetic walking robots[C]//International Society for Optics and Photonics, 2002, 4698(1):246-253.
[13] MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al. Field trials and testing of the Oct Arm continuum manipulator[C]//Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando:IEEE, 2006:23.
[14] RAHN C, WALKER I. Design and experimental testing of the OctArm soft robot manipulator[J]. Proceedings of SPIE, 2006, 6230(2).
[15] GODAGE I, MEDRANO G A, BRANSON D T, et al. Modal kinematics for multi-section continuum arms[J]. Bioinspiration and Biomimetics, 2015, 10(035002):1-18.
[16] LASCHI C, MAZZOLAI B, MATTOLI V, et al. Design of a biomimetic robotic octopus arm[J]. Bioinspiration and Biomimetics, 2009, 4(015006):1-10.
[17] CALISTI M, ARIENTI A, GIANNACCINI M E, et al. Study and fabrication of bioinspired octopus armmockups tested on a multipurpose platform[C]//20103rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo:IEEE, 2010:461-466.
[18] CIANCHETTI M, ARIENTI A, FOLLADOR M, et al. Design concept and validation of a robotic arm inspired by the octopus[J]. Materials Science and Engineering, 2011, 31(6):1230-1239.
[19] MARGHERI L, MAZZOLAI B, PONTE G, et al. Methods and tools for the anatomical study and experimental in vivo measurement of the Octopus vulgaris arm for biomimetic design[J]. 20103rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (Bio Rob). Tokyo:IEEE,2010:467-472.
[20] EMANUELE G, NIKOS T, DARWIN G. An octopus anatomy-inspired robotic arm[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Taipei:IEEE, 2010:3091-3096.
[21] WANG S, ZHU Q, XIONG R,et al. Flexible robotic spine actuated by shape memory alloy[J]. International Journal of Advanced Robotic Systems, 2014, 11(1):56.
[22] KIER W, THOMPSON J.Muscle arrangement, function and specialization in recent coleoids[J]. Berliner Palobiol Abh, 2003(3):141-162.
[23] TANAKA K. A thermomechanical sketch of shape memory effect:one-dimensional tensile behavior[J]. Res Mechanica, 1986, 18(3):251-263.

[1] 都明宇, 鲍官军, 杨庆华, 王志恒, 张立彬. 基于改进支持向量机的人手动作模式识别方法[J]. 浙江大学学报(工学版), 2018, 52(7): 1239-1246.
[2] 秦超, 梁喜凤, 路杰, 彭明, 金超杞. 七自由度番茄收获机械手的轨迹规划与仿真[J]. 浙江大学学报(工学版), 2018, 52(7): 1260-1266.
[3] 王禹, 韦巍. 采用频域Prony方法估计信号重叠双分量[J]. 浙江大学学报(工学版), 2018, 52(6): 1157-1166.
[4] 王卫星, 孙守迁, 李超, 唐智川. 基于卷积神经网络的脑电信号上肢运动意图识别[J]. 浙江大学学报(工学版), 2017, 51(7): 1381-1389.