Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 504-514    DOI: 10.3785/j.issn.1008-973X.2018.03.012
计算机与通信技术     
基于3D激光雷达城市道路边界鲁棒检测算法
孙朋朋, 赵祥模, 徐志刚, 闵海根
长安大学 信息工程学院, 陕西 西安 710064
Urban curb robust detection algorithm based on 3D-LIDAR
SUN Peng-peng, ZHAO Xiang-mo, XU Zhi-gang, MIN Hai-gen
School of Information Engineering, Chang'an University, Xi'an 710064, China
 全文: PDF(7055 KB)   HTML
摘要:

对点云预处理,并采用点云映射的方式快速分割出地面,同时消除路内障碍物以降低数据量;将分割出的地面数据组织成无向图,结合道路边界的多种局部特征和全局连续性特征提取边界点;根据道路边界点的测量模型修正提取的边界点,并采用二次多项式拟合修正后的边界点;采用多种策略对道路边界进行更新以使相邻两帧检测的道路边界保持平滑.实验证明,在道路边界不规则、存在路内障碍物遮挡边界的情况下,采用该方法得到的道路边界检测结果依然具有较高的鲁棒性和准确性.

Abstract:

The point cloud was preprocessed and used to segment the ground part from the background rapidly based on point mapping. Simultaneously, with the preprocessed points cloud, the obstacles in the road can be removed to reduce the number of points and refine the input data for the coming process. The segmented ground data was organized into an undirected graph. With fusing several local features and global continuity features of the road curb, most candidate curb points could be extracted and the fake curb points could be eliminated. Furthermore, a measurement model was utilized to correct the extracted curb points, and then a quadratic polynomial fitting algorithm was applied to get the curve of the two curbs. Finally, several strategies were used to update the detected curbs and smooth the curb curve in the consecutive point cloud frames. The experimental results show that the proposed curb detection algorithm has high robustness and accuracy under the condition of both irregular and occluded road curb even there are obstacles in the road.

收稿日期: 2017-04-13 出版日期: 2018-09-11
CLC:  TP391.4  
基金资助:

国家自然科学基金资助项目(51278058);“高等学校学科创新引智计划”专项资助项目(B14043);交通运输部基础应用研究资助项目(2015319812060);中央高校基本业务研究资助项目(310824173307).

通讯作者: 徐志刚,男,副教授.orcid.org/0000-0002-8479-4973.     E-mail: xuzhigang@chd.edu.cn
作者简介: 孙朋朋(1990-),男,博士生,从事无人车驾驶环境感知关键技术研究.orcid.org/0000-0003-0252-3705.E-mail:pengpeng.sun@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

孙朋朋, 赵祥模, 徐志刚, 闵海根. 基于3D激光雷达城市道路边界鲁棒检测算法[J]. 浙江大学学报(工学版), 2018, 52(3): 504-514.

SUN Peng-peng, ZHAO Xiang-mo, XU Zhi-gang, MIN Hai-gen. Urban curb robust detection algorithm based on 3D-LIDAR. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 504-514.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.03.012        http://www.zjujournals.com/eng/CN/Y2018/V52/I3/504

[1] LUETTEL T, HIMMELSBACH M, WUENSCHE H J. Autonomous ground vehicles:concepts and a path to the future[J]. Proceedings of the IEEE, 2012, 100(5):1831-1839.
[2] HILLEL A B, LERNER R, LEVI D, et al. Recent progress in road and lane detection:a survey[J].Machine Vision and Applications, 2014, 25(3):727-745.
[3] FRITSCH J, KUHNL T, GEIGER A. A new performance measure and evaluation benchmark for road detection algorithms[C]//201316th International IEEE Conference on Intelligent Transportation Systems (ITSC). Hague:IEEE, 2013:1693-1700.
[4] LI Q, CHEN L, LI M, et al. A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios[J]. IEEE Transactions on Vehicular Technology, 2014, 63(2):540-555.
[5] QIN B, CHONG Z J, BANDYOPADHYAY T, et al. Curb-intersection feature based monte carlo localization on urban roads[C]//2012 international IEEE conference on Robotics and automation (ICRA). Saint Paul:IEEE, 2012:2640-2646.
[6] LEE H, PARK J, CHUNG W.Localization of outdoor mobile robots using curb features in urban road environments[J]. Mathematical Problems in Engineering, 2014, 2014(4):1-12.
[7] HATA A Y, WOLF D F. Feature detection for vehicle localization in urban environments using a multilayer LIDAR[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2):420-429.
[8] SEIBERT A, HÄHNEL M, TEWES A, et al.Camera based detection and classification of soft shoulders, curbs and guardrails[C]//2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coas:IEEE, 2013:853-858.
[9] ENZWEILER M, GREINER P, KNÖPPEL C, et al. Towards multi-cue urban curb recognition[C]//2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coas:IEEE, 2013:902-907.
[10] ZHOU H, KONG H, WEI L, et al. Efficient road detection and tracking for unmanned aerial vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1):297-309.
[11] ONIGA F, NEDEVSCHI S. Polynomial curb detection based on dense stereovision for driving assistance[C]//201013th International IEEE Conference on Intelligent Transportation Systems (ITSC). Funchal:IEEE, 2010:1110-1115.
[12] KELLNER M, HOFMANN U, BOUZOURAA M E, et al. Multi-cue, model-based detectionnd mapping of road curb features using stereo vision[C]//201518th International IEEE Conference on Intelligent Transportation Systems (ITSC). Las Palmas:IEEE, 2015:1221-1228.
[13] SIEGEMUND J, FRANKE U, FÖRSTNER W.A temporal filter approach for detection and reconstruction of curbs and road surfaces based on conditional random fields[C]//2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden:IEEE, 2011:637-642.
[14] WIJESOMA W S, KODAGODA K R S, BALASURIYA A P. Road-boundary detection and tracking using ladar sensing[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3):456-464.
[15] LIU Z, WANG J, LIU D. A new curb detection method for unmanned ground vehicles using 2D sequential laser data[J]. Sensors, 2013, 13(1):1102-1120.
[16] HAN J, KIM D, LEE M, et al. Road boundary detection and tracking for structured and unstructured roads using a 2D lidar sensor[J]. International Journal of Automotive Technology, 2014, 15(4):611-623.
[17] 康俊民, 赵祥模, 徐志刚.基于特征几何关系的无人车轨迹回环检测[J]. 中国公路学报,2017, 30(1):121-135. KANG Jun-min,ZHAO Xiang-mo,XU Zhi-gang. Loop closure detection of unmanned vehicle trajectorybased on geometric relationship between features[J].China Journal of Highway and Transport, 2017, 30(1):121-135.
[18] 康俊民, 赵祥模,徐志刚.无人车行驶环境特征分类方法. 交通运输工程学报, 2017,16(6), 140-148. KANG Jun-min,ZHAO Xiang-mo,XU Zhi-gang.Classification method of running environment features for unmanned vehicle[J]. China Journal of Highway and Transport, 2017,16(6):140-148.
[19] ZHAO G, YUAN J.Curb detection and tracking using 3D-LIDAR scanner[C]//201219th IEEE International Conference on Image Processing (ICIP). Orlando:IEEE, 2012:437-440.
[20] 刘健, 梁华为, 梅涛,等. 基于道路形态分析的道路边界提取[J]. 机器人, 2016, 38(3):322-328. LIU Jian, LIANG Hua-wei, MEI Tao,et al. Road curb extraction based on road shape analysis[J]. Robot, 2016, 38(3):322-328.
[21] HATA A Y, OSORIO F S, WOLF D F.Robust curb detection and vehicle localization in urban environments[C]//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn:IEEE, 2014:1257-1262.
[22] ZHANG Y, WANG J, WANG X, et al. 3D LIDAR-based intersection recognition and road boundary detection method for unmanned ground vehicle[C]//2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC). Las Palmas:IEEE, 2015:499-504.
[23] Velodyne HDL-32E LIDAR. User's Manual and programming guide[EB/OL]. (2007-01-01)[2017-07-04]. http://www.velodynelidar.com/lidar/hdlproducts/hdl32e.aspx.
[24] RT3000 User's Manual and programming guide[EB/OL]. (2010-01-01)[2017-07-04]. http://www.oxts.com/Download/Products/RT3000/RT3000%brochure.pdf.
[25] IOANNOU Y, TAATI B, HARRAP R, et al.Difference of normals as a multi-scale operator in unorganized point clouds[C]//2012 Second International Conference on 3D Imaging, Modeling, Processing Visualization and Transmission (3DIMPVT). Zurich:IEEE, 2012:501-508.

[1] 郑洲, 张学昌, 郑四鸣, 施岳定. 基于区域增长与统一化水平集的CT肝脏图像分割[J]. 浙江大学学报(工学版), 2018, 52(12): 2382-2396.
[2] 吴晨睿, 张树有, 何再兴. 基于梯度分类的复杂背景椭圆快速检测方法[J]. 浙江大学学报(工学版), 2018, 52(5): 943-950.
[3] 鲁晓卉, 王进, 陆国栋, 张东亮. 采用多重特征蒙板的人像皮肤美化技术[J]. 浙江大学学报(工学版), 2017, 51(12): 2299-2310.
[4] 蔡晋辉, 张光新, 才辉. 基于连通掩模的重构开算子及应用[J]. J4, 2010, 44(4): 675-680.
[5] 王宣银, 梁冬泰. 基于多元图像分析的表面缺陷检测算法[J]. J4, 2010, 44(3): 448-452.
[6] 孙志海, 孔万增, 朱善安. 视频目标定位的减法聚类改进算法[J]. J4, 2010, 44(3): 458-462.
[7] 毛锋, 张树有, 黄长林. 图像散布图和小波多分辨分析的模具异物检测[J]. J4, 2009, 43(10): 1749-1756.
[8] 范翔, 夏顺仁. 基于特征的显微图像全自动拼接[J]. J4, 2009, 43(7): 1182-1186.
[9] 陈成, 庄越挺, 肖俊. 相机运动条件下的视频前景提取[J]. J4, 2009, 43(6): 975-977.
[10] 徐舒畅, 张三元, 张引. 利用颜色模拟估算皮肤色素浓度[J]. J4, 2009, 43(6): 983-986.
[11] 张冬梅, 刘利刚. 基于角度滤波的平面图形光顺算法[J]. J4, 2009, 43(6): 1042-1046.
[12] 陈硕, 张锋, 沈模卫. 基于同时亮度对比现象的亮度感知用户模型[J]. J4, 2009, 43(5): 822-826.
[13] 张赞超, 夏顺仁. 全自动尿液图像识别技术[J]. J4, 2009, 43(5): 832-838.
[14] 程邦胜, 唐孝威. Harris尺度不变性关键点检测子的研究[J]. J4, 2009, 43(5): 855-859.