Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (2): 273-287    DOI: 10.3785/j.issn.1008-973X.2018.02.010
机械与动力工程     
滴状冷凝的实现方法研究进展
唐媛, 宋佳, 白杨, 张小斌, 邱利民
浙江大学 制冷与低温研究所, 浙江 杭州 310027
Progress in implementation of dropwise condensation
TANG Yuan, SONG Jia, BAI Yang, ZHANG Xiao-bin, QIU Li-min
Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1707 KB)   HTML
摘要:

为了更好地基于不同用途选择合适的滴状冷凝表面,针对滴状冷凝的实现方法、其滴状冷凝换热性能和寿命进行综述.结果表明:增强滴状冷凝表面的疏水性能不会同时显著提高滴状冷凝换热性能;滴状冷凝的表面寿命限制了其工业应用;滴状冷凝工质目前主要针对水蒸汽,缺乏对工业中普遍存在的低表面张力工质的关注;现有方法得到的滴状冷凝表面对温度敏感,温度过高或过低均会影响其性能;未来发展宽温区、适用于低表面张力、长寿命的滴状冷凝表面是非常必要的.

Abstract:

The implementation methods of dropwise condensation, their heat exchange performance and lifetime were reviewed to better choose the most appropriate dropwise condensation surface in different applications. The results in literature show that improving the hydrophobicity of the condensation surface can not simultaneously provide prominent enhancement in heat transfer performance. The surface lifetime limits the application of dropwise condensation in industry. The current studies of dropwise condensate mainly focus on water vapor, but lack attention of low surface tension working fluids, which are commonly used in industries. The dropwise condensation surfaces obtained by the current methods are sensitive to temperature and the performance of the surface is influenced by fluctuations of temperature. It is very essential to develop a durable dropwise condensation surface that can accommodate wide temperature range and low surface tension fluids in the future.

收稿日期: 2017-02-03 出版日期: 2018-03-09
CLC:  TQ028.8  
基金资助:

国家自然科学基金重点关键资助项目(51636007);高等学校博士学科点专项科研基金资助项目(20130101130009).

通讯作者: 邱利民,男,教授.orcid.org/0000-0003-1943-8902.     E-mail: Limin.Qiu@zju.edu.cn
作者简介: 唐媛(1989-),女,博士生,从事低温两相换热等研究.orcid.org/0000-0001-9052-6679.E-mail:06nyhjty@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

唐媛, 宋佳, 白杨, 张小斌, 邱利民. 滴状冷凝的实现方法研究进展[J]. 浙江大学学报(工学版), 2018, 52(2): 273-287.

TANG Yuan, SONG Jia, BAI Yang, ZHANG Xiao-bin, QIU Li-min. Progress in implementation of dropwise condensation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 273-287.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.02.010        http://www.zjujournals.com/eng/CN/Y2018/V52/I2/273

[1] SCHMIDT E, SCHURIG W, SELLSCHOPP W. Versuche über die kondensation von wasserdampf in film-und tropfenform[J].Technische Mechanik und Thermodynamik, 1930, 1(2):53-63.
[2] ROSE J. Surface tension effects and enhancement of condensation heat transfer[J].Chemical Engineering Research and Design, 2004, 82(4):419-429.
[3] 马学虎,陈嘉宾,徐敦颀,等,蒸汽冷凝型态的表面自由能差判据[J].化工学报,2002,53(5):457-460. MA Xue-hu, CHEN Jia-bin, XU Dun-qi, et al. Surface free energy difference criterion for condensation modes[J].Journal of Chemical Industry and Engineering, 2002, 53(5):457-460.
[4] TANASAWA I. Recent advances in condensation heat transfer[C]//Proc. 10th Int. Heat Transfer Conference. Brighton, UK:Taylor & Francis Group, 1994:297-312.
[5] UTAKA Y, WANG S. Characteristic curves and the promotion effect of ethanol addition on steam condensation heat transfer[J].International Journal of Heat and Mass Transfer, 2004, 47(21):4507-4516.
[6] ALI H, NOOR F, KAMRAN M, HUSSAIN A, et al. Condensation heat transfer enhancement using steam ethanol mixtures on a finned tube[J].Pakistan Journal of Science, 2015, 67(1):28.
[7] SADEK H, ROBINSON A, COTTON J, et al. Shoukri M. Electrohydrodynamic enhancement of in-tube convective condensation heat transfer[J].International Journal of Heat and Mass Transfer, 2006, 49(9):1647-1657.
[8] 贾绍义,吴孙.磁场对水蒸气冷凝传热系数的影响[J].磁性材料及器件,2005,36(6):33-35. JIA Shao-yi, WU Sun. Effects of magnetic field on the condensation heat transfer coefficient of steam[J].Journal of Magnetic Material and Devices, 2005, 36(6):33-35.
[9] DERBY M M, CHATTERJEE A, PELES Y, et al. Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns[J].International Journal of Heat and Mass Transfer, 2014, 68(1):151-160.
[10] LEIPERTZ A, CHOI K-H, DIEZEL L. Dropwise condensation heat transfer on ion implanted metallic surfaces[J].Heat Transfer, 2002, 3:887-892.
[11] GARG S. The effect of coatings and surfaces on dropwise condensation[R].No. NCEL-TN-1041, Port Hueneme, California:Naval Civil Engineering Lab, 1969.
[12] MA X, CHEN J, XU D, et al. Influence of processing conditions of polymer film on dropwise condensation heat transfer[J].International Journal of Heat and Mass Transfer, 2002, 45(16) 3405-3411.
[13] ZHAO Q, ZHANG D, LIN J, et al. Dropwise condensation on LB film surface[J].Chemical Engineering and Processing:Process Intensification, 1996, 35(6):473-477.
[14] 赵起,张东昌,林纪方.离子注入制备滴状冷凝表面材料的研究[J].化工学报,1990.41(2):244-248. ZHAO Qi, ZHANG Dong-chang, LIN Ji-fang. Research on preparation of dropwise condensation surface materials by ion implantation[J].Journal of Chemical industry and Engineering, 1990, 41(2):244-248.
[15] 马学虎,徐敦颀.实现水蒸汽滴状冷凝的表面材料研究[J].大连理工大学学报,1994,34(6):662-666. MA Xue-hu, XU Dun-qi. Study on surface material to accomplish water vapor dropwise condensation[J].Journal of Dalian University of Technology, 1994, 34(6):662-666.
[16] VEMURI S, KIM K. An experimental and theoretical study on the concept of dropwise condensation[J].International Journal of Heat and Mass Transfer, 2006,49(3):649-657.
[17] NAKAJIMA A, FUJISHIMA A, HASHIMOTO K, et al. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate[J].Advanced Materials, 1999, 11(16):1365-1368.
[18] BLACKMAN L, DEWAR M, Promoters for the dropwise condensation of steam. Part IV. Discussion of dropwise condensation and testing of compounds[J].Journal of the Chemical Society(Resumed), 1957:160-171.
[19] ERB R, THELEN E. Promoting permanent dropwise condensation[J].Industrial & Engineering Chemistry, 1965, 57(10):49-52.
[20] WILKINS D G, BROMLEY L A, READ S M. Dropwise and filmwise condensation of water vapor on gold[J].AIChE Journal, 1973, 19(1):119-123.
[21] HOLDEN K, WANNIARACHCHI A, MARTO P, et al. The use of organic coatings to promote dropwise condensation of steam[J].Journal of Heat Transfer, 1987, 109(3):768-774.
[22] WOODRUFF D W, WESTWATER J. Steam condensation on various gold surfaces[J].Journal of Heat Transfer, 1981, 103(4):685-692.
[23] O'NEILL G A, WESTWATER J. Dropwise condensation of steam on electroplated silver surfaces[J].International Journal of Heat and Mass Transfer, 1984, 27(9):1539-1549.
[24] ERB R A. Wettability of metals under continuous condensing conditions[J].The Journal of Physical Chemistry, 1965, 69(4):1306-1309.
[25] 张东昌,林载祁,林纪方.实现滴状冷凝新途径的研究——(Ⅲ)滴状冷凝传热系数的测定和寿命实验[J].化工学报,1987,38(3):274-280. ZHANG Dong-chang, LIN Zai-qi, LIN Ji-fang. Study on the new method to achieve dropwise condensation-(Ⅲ) heat transfer coefficient measurement and life test of dropwise condensation[J].Journal of Chemical industry and Engineering, 1987, 38(3):274-280.
[26] 张东昌,林载祁,林纪方.实现滴状冷凝新途径的研究——(Ⅰ)基本概念及实验结果[J].化工学报, 1987,38(3):257-265. ZHANG Dong-chang, LIN Zai-qi, LIN Ji-fang. Study on the new method to achieve dropwise condensation-(I)basic concepts and experimental results[J].Journal of Chemical Industry and Engineering, 1987, 38(3):257-265.
[27] FINNICUM S S, WESTWATER J. Dropwise vs filmwise condensation of steam on chromium[J].International Journal of Heat and Mass Transfer, 1989, 32(8):1541-1549.
[28] 张东昌,林载祁,林纪方.实现滴状冷凝新途径的研究——(Ⅱ)滴状冷凝传热与新表面材料[J].化工学报,1987,38(3):266-273. ZHANG Dong-chang, LIN Zai-qi, LIN Ji-fang, Study on the new method to achieve dropwise condensation-(Ⅱ) dropwise condensation heat transfer with new surface materials[J].Journal of Chemical industry and Engineering, 1987, 38(3):266-273.
[29] 胡国强,徐敦颀.水蒸气在铬表面上的冷凝传热[J].辽阳石油化专学报,1998,14(4):1-7. HU Guo-qiang, XU Dun-qi. Condensation heat transfer of water vapor condensation on chromium surface[J].Journal of Liaoyang Petrochemical College, 1998, 14(4):1-7.
[30] COLLIER J G, THOME J R.Convective boiling and condensation[M].Oxford:Clarendon Press, 1994:471-474.
[31] IZUMI M, KUMAGAI S, SHIMADA R, et al. Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves[J].Experimental Thermal and Fluid Science, 2004, 28(2):243-248.
[32] BLACKMAN L, DEWAR M, HAMPSON H. An investigation of compounds promoting the dropwise condensation of steam[J].Journal of Applied Chemistry, 1957, 7(4):160-171.
[33] TANNER D, POPE D, POTTER C, et al. Heat transfer in dropwise condensation-Part Ⅱ surface chemistry[J].International Journal of Heat and Mass Transfer, 1965, 8(3):427,IN7,429-428,IN7,436.
[34] HARAGUCHI T, SHIMADA R, KUMAGAI S, et al. The effect of polyvinylidene chloride coating thickness on promotion of dropwise steam condensation[J].International Journal of Heat and Mass Transfer, 1991, 34(12):3047-3054.
[35] MA X, ROSE J W, XU D, et al. Advances in dropwise condensation heat transfer:Chinese research[J].Chemical Engineering Journal, 2000, 78(2):87-93.
[36] FOX R. A review of literature on the promotion of dropwise condensation[J].US Navy Marine Engi neering Lab Report, 1962, 71:106.
[37] SATUMINO C. Heat-transfer studies of dropwise condensation and thin-Film evaporation[R].NCEL-TR-255, Port Hueneme,California:Naval Civil Engineering Lab, 1963.
[38] DEPEW C A, REISBIG R L. Vapor condensation on a horizontal tube using teflon to promote dropwise condensation[J].Industrial & Engineering Chemistry Process Design and Development, 1964, 3(4):365-369.
[39] BROWN A, THOMAS M. Filmwise and dropwise condensation of steam at low pressures[C]//Proc. 3rd Int. Heat Transfer Conference. Chicago, US:AICHE, 1966:300-305.
[40] GRAHAM C. The limiting heat transfer mechanisms of dropwise condensation[D].Cambridge:Massachusetts Institute of Technology, 1969.
[41] MANVEL Jr J T. An experimental study of dropwise condensation on horizontal condenser tubes[D].Monterey, California:Naval Postgraduate School,1979.
[42] PERKINS K P. An experimental study of dropwise condensation on vertical discs[D].Monterey, California:Naval Postgraduate School, 1979.
[43] 马学虎,龙振湖.超薄聚合物表面上滴状冷凝的传热研究[J].高校化学工程学报,1993,7(4):309-316. MA Xue-hu, LONG Zhen-hu. Study on heat transfer of dropwise condensation on the ultra-thin polymer surface[J].Journal of Chemical Engineering of Chinese Universities, 1993, 7(4):309-316.
[44] 何平,王立业,王浩然,等.复合沉积(PTFE)表面强化冷凝传热的实验研究[J].化工学报,2000,51(S1):330-334. HE Ping, WANG Li-ye, WANG Hao-ran, et al., Experimental investigation on heat transfer enhancement of PTFE surface by composite deposition.[J].Journal of Chemical Industry and Engineering, 2000, 51(S1):330-334.
[45] DAS A, KILTY H, MARTO P, et al. The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes[J].Journal of Heat Transfer, 2000, 122(2):278-286.
[46] ERB R, THELEN E. Dropwise condensation characteristics of permanent hydrophobic systems[R].Office of Saline Water R&D Report 184, Philadelphia:The Franklin Institute, 1966.
[47] PAXSON A T, YAGUE J L, GLEASON K K, et al. Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films[J].Advanced Materials, 2014, 26(3):418-423.
[48] 马学虎,徐敦颀,林纪方.超薄聚合物表面与滴状冷凝的研究[J].化工学报,1993,44(2):165-170. MA Xue-hu, XU Dun-qi, LIN Ji-fang. Study on dropwise condensation on the super-thin polymer surface[J].Journal of Chemical Industry and Engineering, 1993, 44(2):165-170.
[49] KULLBERG G, KENDALL H, Improved heat transfer coefficients with silicone resin coatings[J].Chemical Engineering Progress, 1960, 56(1):82-84.
[50] LIU X, XU D. Study of enhancement of condensation heat transfer on Cu-BTA film surface[J].J Dalian Univ Technol, 1996, 36:162-164.
[51] KIM S, KIM K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J].Journal of heat transfer, 2011, 133(8):081502.
[52] MARTO P, LOONEY D, ROSE J, et al. Evaluation of organic coatings for the promotion of dropwise condensation of steam[J].International Journal of Heat and Mass Transfer, 1986. 29(8):1109-1117.
[53] YANG Jie-hui, CHENG Li-xin. Study on drowse condensation heat transfer on composite electroplating surface[J].Chemical Engineering, 1996, 24(4):38-41.
[54] 马学虎,徐敦颀.聚合物表面滴状冷凝传热寿命的实验研究[J].工程热物理学报,1997,18(2):196-200. MA Xue-hu, XU Dun-qi. Experimental study on dropwise condensation heat transfer liftime of polymer surface[J].Journal of Engineering Thermophysics, 1997, 18(2):196-200.
[55] LARA J R, HOLTZAPPLE M T. Experimental investigation of dropwise condensation on hydrophobic heat exchangers. Part Ⅱ:Effect of coatings and surface geometry[J].Desalination, 2011, 280(1):363-369.
[56] ZHAO Q, LIU Y. Investigation of graded Ni-Cu-P-PTFE composite coatings with antiscaling properties[J].Applied Surface Science, 2004, 229(1):56-62.
[57] DAS A, KILTY H P, MARTO P J, et al. Dropwise condensation of steam on horizontal corrugated tubes using an organic self-assembled monolayer coating[J].Journal of Enhanced Heat Transfer, 2000, 7(2):109-123.
[58] YANG Q, GU A. Dropwise condensation on SAM and electroless composite coating surfaces[J].Journal of Chemical Engineering of Japan, 2006. 39(8):826-830.
[59] BAIN C D, EVALL J, WHITESIDES G M. Formation of monolayers by the coadsorption of thiols on gold:variation in the head group, tail group, and solvent[J].Journal of the American Chemical Society, 1989, 111(18):7155-7164.
[60] GAVRISH A, RIFERT V, SARDAK A, et al. A new dropwise condensation promoter for desalination and power plants[J].Heat Transfer Research, 1993, 25(1):82-86.
[61] PANG G, DALE J D, KWOK D Y. An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry[J].International Journal of Heat and Mass Transfer, 2005, 48(2):307-316.
[62] VEMURI S, KIM K, WOOD B, et al. Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan[J].Applied Thermal Engineering, 2006, 26(4):421-429.
[63] ZASADZINSKI J A, VISWANATHAN R, MADSEN L, et al. Langmuir-Blodgett films[J].Science, 1994, 263(5154):1726-1733.
[64] NARHE R, BEYSENS D. Water condensation on a super-hydrophobic spike surface[J].EPL:Europhysics Letters, 2006, 75(1):98.
[65] JUNG Y, BHUSHAN B. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces[J].Journal of Microscopy, 2008, 229(1):127-140.
[66] ENRIGHT R, MILJKOVIC N, AL-OBEIDI A, et al. Condensation on superhydrophobic surfaces:The role of local energy barriers and structure length scale[J].Langmuir, 2012, 28(40):14424-14432.
[67] RYKACZEWSKI K, OSBORN W A, CHINN J, et al. How nanorough is rough enough to make a surface superhydrophobic during water condensation?[J].Soft Matter, 2012, 8(33):8786-8794.
[68] WIER K A, MCCARTHY T J. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility:ultrahydrophobic surfaces are not always water repellant[J].Langmuir, 2006, 22(6):2433-2436.
[69] BOREYKO J B, CHEN C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J].Physical Review Letters, 2009, 103(18):184501.
[70] CHEN X, WU J, MA R, et al. Nanograssed micropyramidal architectures for continuous dropwise condensation[J].Advanced Functional Materials, 2011, 21(24):4617-4623.
[71] ATTINGER D, FRANKIEWICZ C, BETZ A R, et al. Surface engineering for phase change heat transfer:A review[J].MRS Energy & Sustainability, 2014, 1:E4.
[72] QUA M, HEA J, ZHANG J. Superhydrophobicity, learn from the lotus leaf[J].Biomimetics Learning From Nature, InTech, 2010.
[73] CHEN C H, CAI Q, TSAI C, et al. Dropwise condensation on superhydrophobic surfaces with two-tier roughness[J].Applied Physics Letters, 2007, 90(17):173108.
[74] DIETZ C, RYKACZEWSKI K, FEDOROV A, et al. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation[J].Applied Physics Letters, 2010, 97(3):033104.
[75] MILJKOVIC N, ENRIGHT R, NAM Y, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces[J].Nano Letters, 2012, 13(1):179-187.
[76] TORRESIN D, TIWARI M K, DEL C D, et al. Flow condensation on copper-based nanotextured superhydrophobic surfaces[J].Langmuir, 2013, 29(2):840-848.
[77] KIM H, NAM Y. Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces[J].International Journal of Heat and Mass Transfer, 2016, 93:286-292.
[78] LEE J Y, PECHOOK S, JEON D J, et al. Three-dimensional triple hierarchy formed by self-assembly of wax crystals on CuO nanowires for nonwettable surfaces[J].ACS Applied Materials & Interfaces, 2014, 6(7):4927-4934.
[79] ZHAO Y, LUO Y, ZHU J, et al. Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance[J].ACS Applied Materials & Interfaces, 2015, 7(22):11719-11723.
[80] AILI A, LI H, ALHOSANI M H, ZHANG T. Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces[J].ACS Applied Materials & Interfaces, 2016. 8(33):21776-21786.
[81] AILI A, LI H, ALHOSANI M H, et al. Characteristics of jumping droplet-enhanced condensation on nanostructured micromesh surface[C]//International Conference on Micro/nanoscale Heat and MASS Transfer. Biopolis, Singapore:ASME, 2016:6382.
[82] YIN L, WANG Y, DING J, et al. Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings[J].Applied Surface Science, 2012, 258(8):4063-4068.
[83] MAHAPATRA P S, GHOSH A, GANGULY R, et al. Key design and operating parameters for enhancing dropwise condensation through wettability patterning[J].International Journal of Heat and Mass Transfer, 2016, 92:877-883.
[84] PARIN R, DEL C D, BORTOLIN S, et al. Dropwise condensation over superhydrophobic aluminium surfaces[C]//Journal of Physics Conference Series. Krakow, Poland:IOP Publishing Ltd, 2016:745(3):032134.
[85] HE M, DING Y, CHEN J, et al. Spontaneous uphill movement and self-removal of condensates on hierarchical tower-like arrays[J].ACS Nano, 2016, 10(10):9456-9462.
[86] HASSEBROOK A, LUCIS M J, SHIELD J E, et al. Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces[C]//Proceedings of the ASME 201513th International Conference on Nanochannels, Microchannels, and Minichannels. San Francisco, California, USA:ASME, 2015:48459.
[87] ANDERSON D M, GUPTA M K, VOEVODIN A A, et al., Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation[J].ACS Nano, 2012, 6(4):3262-3268.
[88] ZHU J, LUO Y, TIAN J, et al. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance[J].ACS Applied Materials & Interfaces, 2015, 7(20):10660-10665.
[89] MONDAL B, MAC G E M, XU Q, et al. Design and fabrication of a hybrid superhydrophobic-hydrophilic surface that exhibits stable dropwise condensation[J].ACS Applied Materials & Interfaces, 2015, 7(42):23575.
[90] ÖLÇEROGHU E, MCCARTHY M. Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces[J].ACS Applied Materials & Interfaces, 2016, 8(8):5729-5736.
[91] MILJKOVIC N, ENRIGHT R, WANG E-N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces[J].ACS Nano, 2012, 6(2):1776-1785.
[92] GRAHAM C, GRIFFITH P. Drop size distributions and heat transfer in dropwise condensation[J].International Journal of Heat and Mass Transfer, 1973, 16(2):337-346.
[93] NARHE R, BEYSENS D. Nucleation and growth on a superhydrophobic grooved surface[J].Physical Review Letters, 2004, 93(7):076103.
[94] AZIMI G, DHIMAN R, KWON H M et al. Hydrophobicity of rare-earth oxide ceramics[J].Nature Materials, 2013, 12(4):315-320.
[95] PRESTON D J, MILJKOVIC N, SACK J, et al. Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics[J].Applied Physics Letters, 2014, 105(1):011601.
[96] LUO Y, LI J, ZHU J, et al. Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces[J].Angewandte Chemie, 2015, 54(16):4876-9.
[97] DANIEL S, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J].Science, 2001, 291(5504):633-636.
[98] HER E K, KO T J, LEE K R, et al. Bioinspired steel surfaces with extreme wettability contrast[J].Nanoscale, 2012, 4(9):2900-2905.
[99] SCHUTZIUS T M, BAYER I S, JURSICH G M, et al. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films[J].Nanoscale, 2012, 4(17):5378-5385.
[100] GARROD R, HARRIS L, SCHOFIELD W, et al. Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces[J].Langmuir, 2007, 23(2):689-693.
[101] PATANKAR N A. Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer[J].Soft Matter, 2010, 6(8):1613-1620.
[102] LIU Y, WHYMAN G, BORMASHENKO E, et al. Controlling drop bouncing using surfaces with gradient features[J].Applied Physics Letters, 2015, 107(5):051604.
[103] PARK K C, KIM P, GRINTHAL A, et al. Condensation on slippery asymmetric bumps[J].Nature, 2016, 531(7592):78-82.
[104] CHAVAN S, CHA H, OREJON D, et al. Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces[J].Langmuir, 2016, 32(31):774-7787.
[105] D'URSO B, SIMPSON J, KALYANARAMAN M. Emergence of superhydrophobic behavior on vertically aligned nanocone arrays[J].Applied Physics Letters, 2007, 90(4):044102.
[106] CHOI C H, KIM C J. Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control[J].Nanotechnology, 2006, 17(21):5326.
[107] SIMPSON J T, HUNTER S R, AYTUG T. Superhydrophobic materials and coatings:a review[J].Reports on Progress in Physics, 2015, 78(8):086501.
[108] YAO C W, ALVARADO J L, MARSH C P, et al. Wetting behavior on hybrid surfaces with hydrophobic and hydrophilic properties[J].Applied Surface Science, 2014, 290:59-65.
[109] PENG B, MA X, LAN Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J].International Journal of Heat and Mass Transfer, 2015, 83:27-38.
[110] DAMLE V G, SUN X, RYKACZEWSKI K. Can metal matrix-hydrophobic nanoparticle composites enhance water condensation by promoting the dropwise mode?[J].Advanced Materials Interfaces, 2015, 2(16):1500202(1-11).
[111] NOSONOVSKY M, HEJAZI V, NYONG A E, et al. Metal matrix composites for sustainable lotus-effect surfaces[J].Langmuir, 2011, 27(23):14419-14424.
[112] PRESTON D J, MAFRA D L, MILJKOVIC N, et al. Scalable graphene coatings for enhanced condensation heat transfer[J].Nano letters, 2015, 15(5):2902-2909.
[113] RYKACZEWSKI K, PAXSON A T, STAYMATES M, et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces[J].Nature-Scientific Reports, 2014, 4(3):4158.
[114] MILJKOVIC N, PRESTON D J, ENRIGHT R, et al. Electrostatic charging of jumping droplets[J].Nature Communications, 2013, 4(9):2517.
[115] YAN X, LI J, LI L, et al. Droplet condensation on superhydrophobic surfaces with enhanced dewetting under a tangential AC electric field[J].Applied Physics Letters, 2016, 109(16):161601.
[116] LV C, HAO P, YAO Z, et al. Departure of condensation droplets on superhydrophobic surfaces[J].Langmuir, 2015, 31(8):2414-2420.
[117] ENRIGHT R, MILJKOVIC N, DOU N, et al. Condensation on superhydrophobic copper oxide nanostructures[J].Journal of Heat Transfer, 2013, 135(9):091304.

No related articles found!