Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (11): 2287-2291    DOI: 10.3785/j.issn.1008-973X.2017.11.024
电气电子自动化     
宽带压电振动能量收集器结构设计与实验验证
邓志强1,2, 王翔1,2, 郑政2, 李春来3, 李欢3, 伞海生1,2
1. 厦门大学 萨本栋微米纳米科学技术研究院, 福建 厦门 361005;
2. 厦门大学 航空航天学院, 福建 厦门 361005;
3. 深圳光启高等理工研究院, 广东 深圳 518000
Design and experiment of wideband piezoelectric vibration energy harvester
DENG Zhi-qiang1,2, WANG Xiang1,2, ZHENG Zheng2, LI Chun-lai3, LI Huan3, SAN Hai-sheng1,2
1. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China;
2. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China;
3. Shenzhen Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
 全文: PDF(1348 KB)   HTML
摘要:

为了收集环境中随机振动的能量,提出谐振频率和带宽皆可调的压电振动能量收集方法.通过调节止挡块的高度,振动能量收集器可以达到自由、碰撞和预紧3种工作状态.根据3种工作状态,建立振动数学模型,利用有限元和MATLAB软件仿真振动能量收集器的输出性能.加工L型四悬臂结构的大尺寸原理样机,在1g激励加速度下,测试自由、碰撞和预紧3种结构下的电压输出与频率的关系.实验结果与建模仿真结果表明,碰撞振动模式比自由和预紧模式有更好的能量收集效果,结构的非线性刚度对能量收集器的谐振频率和带宽有显著影响.

Abstract:

A piezoelectric vibration energy harvesting method with tunable frequency and wideband was proposed in order to harvest the energy of random vibration from ambient. The vibration energy harvester (VEH) can work at free, impact, and preload vibration mode by adjusting the height of mechanical stopper, respectively. The mathematical model was established corresponding to the three work modes of the VEH. The output characteristics of VEH was simulated using finite element analysis software and MATLAB. Large size of prototype with four L-shape cantilevers was fabricated through experiments. The relationships between voltage output and frequency were measured under free, impact, and preload work modes, respectively, with external excitation of a=1.0g. Experimental results and modeling results show that the impact mode has better energy harvesting effect than the free and preload mode. The nonlinear stiffness of the structure has a significant effect on the resonant frequency and bandwidth of VEH.

收稿日期: 2016-12-15 出版日期: 2017-11-13
CLC:  TN712  
基金资助:

国家自然科学基金资助项目(61574117);福建省科技计划资助项目(2017H0039).

通讯作者: 伞海生,男,教授.ORCID:0000-0002-6019-923X.     E-mail: sanhs@xmu.edu.cn
作者简介: 邓志强(1987-),男,博士生,从事振动能量收集等研究ORCID:0000-0003-4253-8135.E-mail:dzq5202008@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

邓志强, 王翔, 郑政, 李春来, 李欢, 伞海生. 宽带压电振动能量收集器结构设计与实验验证[J]. 浙江大学学报(工学版), 2017, 51(11): 2287-2291.

DENG Zhi-qiang, WANG Xiang, ZHENG Zheng, LI Chun-lai, LI Huan, SAN Hai-sheng. Design and experiment of wideband piezoelectric vibration energy harvester. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2287-2291.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.11.024        http://www.zjujournals.com/eng/CN/Y2017/V51/I11/2287

[1] BRIAND D, YEATMAN E, ROUNDY S, et al. Micro energy harvesting[M]. USA:John Wiley & Sons, 2015:201-210.
[2] ERTURK A, INMAN D J. Piezoelectric Energy Harvesting[M]. USA:John Wiley & Sons, 2011:1-10.
[3] KHAMENEIFAR F, ARZANPOUS, MOALLE M. A piezoelectric energy harvester for rotary motion applications:design and experiments[J]. Mechatronics IEEE/ASME Transactions on, 2013, 18(5):1527-1534.
[4] DENG L CH, WEN ZH Y, ZHAO X Q, et al. High Voltage output mems vibration energy harvester in d31 mode with PZT thin film[J]. Journal of Microelectromechanical Systems, 2014, 23(4):855-861.
[5] 王淑云,张肖逸,阚君武,等.气体耦合式宽带/低频压电振动俘能器[J].光学精密工程,2015, 23(2):497-503. WANG Shu-yun, ZHANG Xiao-yi, KAN Jun-wu, et al. Wideband/low frequency piezoelectric vibration energy harvester based on pneumato-coupling[J]. Optical Precision Engineering, 2015, 23(2):497-503.
[6] LEI G, CAROL L. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation[J]. Smart Materials and Structures, 20.4(2011):045004.
[7] VIJAYAN K, FRISWELL M I, KHODAPARAST H H, et al. Non-linear energy harvesting from coupled impacting beams[J]. International Journal of Mechanical Sciences, 101(2015):96-97.
[8] MORRIS D J, YOUNGSMAN J M, ANDERSON M J, et al. A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism[J]. Smart Materials andStructures, 2008, 17(6):2292-2299.
[9] BLYSTAD L C J, HALVORSEN E. A piezoelectric energy harvester with a mechanical end stop on one side[J]. Microsystem Technologies, 17.4(2011):505-511.
[10] DUTOIT N E, BRIAN L W, KIM S G. Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters[J]. Integrated Ferroelectrics, 2005, 71(1):121-160.
[11] CRABTREE O I, MESAROVIC S D, RICHARDS R F, et al. Nonlinear vibrations of a pre-stressed laminated thin plate[J]. International Journal of Mechanical Sciences, 2006, 48(4):451-459.
[12] 郑木鹏,侯育冬,朱满康,等. 能量收集用压电陶瓷材料的研究进展[J].硅酸盐学报,2016, 44(3):359-366. ZHENG Mu-peng, HOU Yu-dong, ZHU Man-kang, et al. Research progress of piezoelectric ceramics for energy harvesting[J]. Journal of the Chinese Ceramic society, 2016, 44(3):359-366.
[13] PRIYA S. Criterion for material selection in design of bulk piezoelectric energy harvesters[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(12):2610-2612.
[14] ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials[J]. Smart Materials and Structures, 2007, 16(3):1-21.

No related articles found!