Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (11): 2249-2258    DOI: 10.3785/j.issn.1008-973X.2017.11.020
机械与动力工程     
水泵水轮机泵工况流动结构演变对驼峰特性的影响
张春泽1,3, 夏林生2,3, 刁伟1,3
1. 重庆交通大学 西南水运工程科学研究所, 重庆 400016;
2. 中国舰船设计研究中心, 湖北 武汉 430064;
3. 武汉大学 水资源与水电科学国家重点实验室, 湖北 武汉 430072
Influence of flow structures evolution on hump characteristics of a model pump-turbine in pump mode
ZHANG Chun-ze1,3, XIA Lin-sheng2,3, DIAO Wei1,3
1. Chongqing Southwest Water Transport Engineering Research Institute, Chongqing 400016, China;
2. China Ship Development and Design Center, wuhan 430064, China;
3. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
 全文: PDF(14137 KB)   HTML
摘要:

为了揭示水泵水轮机在泵工况流动结构演变对特性曲线驼峰特性的影响,采用SAS湍流模型对多个工况点的流态进行全流道数值模拟,得到两者之间的关联性.结果表明,当水轮机在40%~80%最优流量运行时,导叶内发生旋转失速;当流量低于40%最优流量时,转轮进口产生的回流涡结构在尾水管边壁侧产生螺旋回流阻碍过流,并改变转轮叶道在空间上的过流能力,进而改变转轮出流特性;转轮出口下环侧流速降低,使导叶所有叶道均产生剧烈流动分离,导致旋转失速消失,并产生回流流入转轮.转轮进口回流涡结构的出现,改变了水轮机内的流动分离特性,使水头损失突然增大,产生驼峰特性.

Abstract:

The SAS turbulence model and unsteady RANS approach were adopted to simulate the internal flow in a mode pump-turbine under different flow rate in order to analyze the influence of flow structures evolution within pump-turbine on the hump characteristics. Results show that the rotating stall occurs within the guide vanes over a large range of part load operating conditions from 40% to 80% of best efficiency point (BEP) flow rate. When the flow rate decreases to less than 40% of BEP flow rate, the flow recirculation on shroud side at runner inlet appears and causes the helical backflow near the wall of draft tube. These reverse flow vortices at runner inlet change the spatial distribution of flow rate inside runner and the runner outflow. The decelerated outflow at shroud side cause severe separations in guide vanes. The irregular vortices occupy all flow passages with backward flow at shroud side and the regular rotating stall disappears. The reverse flow vortex structures at runner inlet make a sudden change of the internal flow features and increase of the flow losses, resulting the hump characteristics.

收稿日期: 2016-12-15 出版日期: 2017-11-13
CLC:  TV7  
基金资助:

国家自然科学基金资助项目(51579187);重庆市科委自然科学基金资助项目(cstc2016jcyjA1935);重庆市教委基金资助项目(KJ1600514);重庆交通大学内河航道整治技术交通行业重点实验室开放基金资助项目(NHHD-201505)

通讯作者: 夏林生,男,工程师.ORCID:0000-0002-0899-8827.     E-mail: xialinsheng@whu.edu.cn
作者简介: 张春泽(1986-),男,副研究员,从事水电站复杂流态等研究.ORCID:0000-0003-1694-8341.E-mail:zhangchunze@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张春泽, 夏林生, 刁伟. 水泵水轮机泵工况流动结构演变对驼峰特性的影响[J]. 浙江大学学报(工学版), 2017, 51(11): 2249-2258.

ZHANG Chun-ze, XIA Lin-sheng, DIAO Wei. Influence of flow structures evolution on hump characteristics of a model pump-turbine in pump mode. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2249-2258.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.11.020        http://www.zjujournals.com/eng/CN/Y2017/V51/I11/2249

[1] ZUO Z, LIU S, SUN Y, et al. Pressure fluctuations in the vaneless space of high-head pump-turbines-A review[J]. Renewable and Sustainable Energy Reviews, 2015, 41:965-974.
[2] 冉红娟,张瑶,罗先武,等.可逆式水轮机泵工况下驼峰现象的数值模拟[J].水力发电学报,2011, 30(3):175-179. RAN Hong-juan, ZHANG Yao, LUO Xian-wu, et al. Numerical simulation of the positive-slope performance curve of a reversible hydro-turbine in pumping mode[J]. Journal of Hydroelectric Engineering, 2011, 30(3):175-179.
[3] RAN H, LUO X, ZHANG Y, et al. Numerical simulation of the unsteady flow in a high-head pump turbine and the runner improvement[C]//ASME 2008 Fluids Engineering Division Summer Meeting. Jacksonville:American Society of Mechanical Engineers, 2008:1115-1123.
[4] RAN H, LUO X, ZHU L, et al. Experimental study of the pressure fluctuations in a pump turbine at large partial flow conditions[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6):1205-1209.
[5] 王焕茂,吴钢,吴伟章,等.混流式水泵水轮机驼峰区数值模拟及分析[J].水力发电学报,2012, 31(6):253-258. WANG Huan-mao, WU Gang, WU Wei-zhang, et al. Numerical simulation and analysis of the hump district of Francis pump-turbine[J]. Journal of Hydroelectric Engineering, 2012, 31(6):253-258.
[6] 陶然,肖若富,杨魏,等.可逆式水泵水轮机泵工况的驼峰特性[J].排灌机械工程学报,2014,32(11):927-930. TAO Ran, XIAO Ruo-fu, YANG Wei, et al. Hump characteristic of reversible pump-turbine in pump mode[J]. Journal of Drainage & Irrigation Machinery Engineering, 2014, 32(11):927-930.
[7] XIAO Y, YAO Y, WANG Z, et al. Hydrodynamic mechanism analysis of the pump hump district for a pump-turbine[J]. Engineering Computations, 2016, 33(3):957-976.
[8] DEYOU L, HONGJIE W, GAOMING X, et al. Unsteady simulation and analysis for hump characteristics of a pump turbine model[J]. Renewable Energy, 2015, 77:32-42.
[9] LI D, GONG R, WANG H, et al. Analysis of vorticity dynamics for hump characteristics of a pump turbine model[J]. Journal of Mechanical Science and Technology, 2016, 30(8):3641-3650.
[10] 李德友,宫汝志,王洪杰,等.水泵水轮机不同导叶开口的驼峰特性[J].排灌机械工程学报,2016,34(1):1-8. LI De-you, GONG Ru-zhi, WANG Hong-jie, et al. Unstable head-flow characteristics of pump-turbine under different guide vane openings in pump mode[J]. Journal of Drainage & Irrigation Machinery Engineering, 2016, 34(1):1-8.
[11] GUGGENBERGER M, SENN F, JABERG H, et al. Experimental analysis of the flow pattern of a pump turbine model in pump mode[C]//IOP Conference Series:Earth and Environmental Science. Grenoble:IOP Publishing, 2016, 49(4):042001.
[12] JESE U, FORTES-PATELLA R. Unsteady numerical analysis of the rotating stall in pump-turbine geometry[C]//IOP Conference Series:Earth and Environmental Science. Grenoble:IOP Publishing, 2016, 49(4):042005.
[13] BRAUN O, KUUENY J L, AVELLAN F. Numerical analysis of flow phenomena related to the unstable energy-discharge characteristic of a pump-turbine in pump mode[C]//ASME 2005 Fluids Engineering Division Summer Meeting. Houston:American Society of Mechanical Engineers, 2005:1075-1080.
[14] BRAUN O. Part load flow in radial centrifugal pumps[D]. Lausanne:Swiss Federal Institute of Technology, 2009.
[15] PACOT O, KATO C, AVELLAN F. High-resolution LES of the rotating stall in a reduced scale model pump-turbine[C]//IOP Conference Series:Earth and Environmental Science. Montreal:IOP Publishing, 2014, 22(2):022018.
[16] 张春泽,夏林生,刁伟,等.水泵水轮机泵工况旋转失速压力脉动特性及转动机理[J].水利学报,2017,48(7):837-845. ZHANG Chun-ze,XIA Lin-sheng,DIAO Wei,et al. Pressure fluctuations characteristics and rotating stall propagation mechanism of a pump-turbine in pump mode[J]. Journal of Hydraulic Engineering, 2017, 48(7):837-845.
[17] XIA L S, CHENG Y G, ZHANG X X, et al. Numerical analysis of rotating stall instabilities of a pump-turbine in pump mode[C]//IOP Conference Series:Earth and Environmental Science. Montreal:IOP Publishing, 2014, 22(3):032020.
[18] YIN J L, LIU J T, WANG L Q, et al. Performance prediction and flow analysis in the vaned distributor of a pump turbine under low flow rate in pump mode[J]. Science China Technological Sciences, 2010, 53(12):3302-3309.
[19] YANG J, PAVESI G, YUAN S, et al. Experimental characterization of a pump-turbine in pump mode at hump instability region[J]. Journal of Fluids Engineering, 2015, 137(5):051109.
[20] LUCIUS A, BRENNER G. Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation[J]. International Journal of Heat and Fluid Flow, 2010, 31(6):1113-1118.
[21] TRIVEDI, CHIRAG, MICHEL J, et al. Numerical techniques applied to hydraulic turbines:a perspective review[J]. Applied Mechanics Reviews, 2016, 68(1):010802.
[22] KRAPPEL T, RUPRECHT A, RIEDELBAUCH S. Flow simulation of francis turbines using hybrid rans-les turbulence models[J]. High Performance Computing in Science & Engineering, 2015, 14(0):417-431.
[23] 夏林生,程永光,蔡芳,等.水泵水轮机四象限工作区流动特性数值分析[J].水利学报,2015,46(7):859-868. XIA Lin-sheng, CHENG Yong-guang, CAI Fang, et al. Numerical analysis of flow characteristics of a model pump-turbine in four operating quadrants[J]. Journal of Hydraulic Engineering, 2015, 46(7):859-868.
[24] 孙跃昆.低比转速水泵水轮机驼峰稳定性及其影响因素研究[D].北京:清华大学,2016. SUN Yuekun. Instability characteristics and influencing factors of positive slope on pump performance curves of a low-specific-speed pump-turbine[D], Doctoral Thesis, Tsinghua University, 2016.
[25] SINHA M, PINARBASI A, KATZ J. The flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump[J]. Journal of Fluids Engineering, 2001, 123(3):490-499.
[26] 周佩剑,王福军,姚志峰.离心泵叶轮旋转失速团特性分析[J].水利学报,2015,46(9):1128-1134. ZHOU Pei-jian, WANG Fu-jun, YAO Zhi-feng. Analysis of rotating stall cells in an impeller of a centrifugal pump[J]. Journal of Hydraulic Engineering, 2015, 46(9):1128-1134.
[27] ZHANG Z. Rotating stall mechanism and stability control in the pump flows[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2011, 225(6):779-788.

No related articles found!