Please wait a minute...
浙江大学学报(工学版)
机械工程     
基于液压变压器的TBM刀盘混合驱动系统
刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌
浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027
Hybrid cutterhead driving system for TBM based on hydraulic transformer
LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1140 KB)   HTML
摘要:

针对全断面硬岩隧道掘进机(TBM)电机驱动系统脱困扭矩不足、欠负载工作效率低等问题, 提出基于液压变压器(HT)的二次调节系统协同变频电机的刀盘混合驱动方案. 通过分析液压变压器的工作原理并建立数学模型, 基于直径为2.5 m TBM实验台的性能要求, 在AMEsim软件平台上搭建液压变压器超级元件模型并进行二次调节系统的性能验证. 采用插值查表法反算控制角度实时控制变压器在蓄能器充放时的输入输出压力稳定, 引入变比例系数PID闭环控制提高压力控制精度. 仿真结果表明:通过调节液压变压器的变压比能实现二次调节泵/马达对蓄能器的精确低压充能和高压释放,压力控制误差小于2%,典型工况下刀盘驱动系统效率可提高4.99%.

Abstract:

A hybrid driving system combing frequency conversion motor and hydraulic transformer (HT) based secondary regulation system was proposed to improve the performance of a hard rock tunnel boring machine (TBM) cutterhead electric motor driving system, aiming to solve the problem of inadequate driving capability when cutterhead getting stuck and inefficiency under low load ratios. The mathematical model of HT was established according to structure, pressure and flow rate analysis. Considering the requirement of the TBM test bed, the HT super component model was found in AMEsim and the function of secondary regulation system at both working quadrant was confirmed subsequently. The subsection linear regression method was applied to obtain constant input or output pressure of HT while the accumulator got charged or released. Closed loop control under variable proportional parameter PID strategy was introduced to improve the accuracy of pressure regulation. The results show that HT can get accumulator constant low pressure charged and high pressure released by secondary regulation pump motor with pressure error under 2%, and the efficiency of the cutterhead driving system in classical work condition is improved by 4.99%.

出版日期: 2016-09-18
:  TH 137  
基金资助:

 国家“863”高技术研究发展计划资助项目(2012AA041803); 国家“973”重点基础研究发展规划资助项目(2013CB035400).

通讯作者: 龚国芳,男,教授. ORCID:0000 0001 9553 8783.     E-mail: gfgong@zju.edu.cn
作者简介: 刘统(1993-),男,博士生,从事隧道掘进装备电液控制技术研究. ORCID:0000 0002 1889 1062. E-mail:liutongforyq@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.03.004.

LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin. Hybrid cutterhead driving system for TBM based on hydraulic transformer. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.03.004.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.03.004        http://www.zjujournals.com/eng/CN/Y2016/V50/I3/419

[1] 杜彦良, 杜世杰. 全断面岩石隧道掘进机——系统原理与集成设计[M]. 武汉:华中科技大学出版社, 2011:1-10.
[2] 杜士斌, 揣连成. 开敞式TBM的应用[M]. 北京:中国水利水电出版社, 2011:1-26.
[3] 柴永模, 王建宇. 隧道掘进机在中国铁道工程中的应用及前景[J]. 建筑机械月刊, 2002(5):41-44.
CHAI Yong mo, WANG Jian yu. The application and prospect of tunnel boring machine in Chinas railway construction [J]. Construction Machinery, 2002(5): 41-44.
[4] 钱七虎, 李朝甫, 傅德明. 隧道掘进机在中国地下工程中应用现状及前景展望[J]. 地下空间与工程学报, 2002, 22(1):1-11.
QIAN Qi hu, LI Chao pu, FU De ming. The present and prospect of application of tunneler in Chinas underground engineering [J]. Underground Space, 2002, 22(1): 1-11.
[5] 周赛群. 全断面硬岩掘进机(TBM)驱动系统的研究[D]. 杭州:浙江大学, 2008:10-25.
ZHOU Sai qun. Study on drive system of the full face rock tunnel boring machine [D]. Hangzhou: Zhejiang University, 2008: 10-25.
[6] 刘然. 盾构机刀盘同步驱动系统自适应均载控制研究[D]. 大连:大连理工大学, 2013: 9-18.
LIU Ran. Research on adaptive load sharing control for synchronous driving system of cutterhead in shield machines [D].Dalian: Dalian University of Technology, 2013: 9-18.
[7] 邢彤, 杨华勇, 龚国芳. 盾构刀盘驱动液压系统效率对比研究[J]. 浙江大学学报:工学版, 2010, 44(2): 328-363.
XING Tong, YANG Hua yong, GONG Guo fang. Efficiency comparative study for hydraulic drive system of cutterhead in shield tunneling machine [J]. Journal of Zhejiang University:Engineering Science, 2010, 44(2): 328-363.
[8] YANG X, GONG G F, YANG H Y, et al. A cutterhead energy saving technique for shield tunneling machines based on load characteristic prediction [J]. Journal of Zhejiang University SCIENCE A:Applied Physics and Engineering, 2015, 16(5):418-426.
[9] ROSTAMI J. Hard rock TBM cutterhead modeling for design and performance prediction [J]. Geomechanics and Tunneling, 2008, 1(1): 18-28.
[10] LI X H, YU H B, YUAN M Z, et al. Dynamic modeling and analysis of shield TBM cutterhead driving system [J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(4): 04454.
[11] SUN J Z, LIU R, LUO Y Q, et al. Research on multi motor synchronization control for cutterhead of shield machine based on the ring coupled strategy [M] ∥ Intelligent Robotics and Applications. Berlin Herdelberg:Springer, 2009: 345-354.
[12] 石茂顺, 刘宏伟, 李伟,等. 基于液压变压器原理的海流发电液压传动系统[J]. 浙江大学学报:工学版, 2014, 48(5): 764-769.
SHI Mao shun, LIU Hong wei, LI wei, et al. Tidal current turbine hydraulic transmission system based on hydraulic transformer [J]. Journal of Zhejiang University:Engineering Science, 2014, 48(5): 764-769.
[13] VAEL G, ACHTEN P, ZHAO F. The innas hydraulic transformer: the key to the hydrostatic common pressure rail [J]. SAE Transactions, 2000, 21(1): 2561-2576.
[14] ACHTEN P, ZHAO F, VAEL G. Transforming future hydraulics: a new design of a hydraulic transformer [C] ∥ The 5th Scandinavian International Conference on Fluid Power, Linkping:SICFP, 1997: 1-30.
[15] 马吉恩, 杨华勇, 徐兵,等. 液压变压器效率特性的测试与分析[J]. 浙江大学学报:工学版, 2008, 42(7): 1231-1235.
MA Ji en, YANG Hua yong, XU Bing, et al. Test and analysis on the efficiency of hydraulic transformer[J]. Journal of Zhejiang University:Engineering Science, 2008, 42(7): 12311235.
 [16] 姜继海, 卢红影, 周瑞艳, 等. 液压恒压网络系统中液压变压器的发展历程[J]. 东南大学学报:自然科学版, 2006, 36(5): 869-874.
JIANG Ji hai, LU Hong ying, ZHOU Yan rui, et al. Development of hydraulic transformer in constant pressure rail system [J]. Journal of Southeast University Natural Science Edition, 2006, 36(5): 869-874.
[17] VAEL G, ACHTEN P, POTMA J. Cylinder control with the floating cup hydraulic transformer [C] ∥ The 8th Scandinavian International Conference on Fluid Power, Tampere:SICFP, 2003:1-15.
[18] 荆崇波, 魏超, 李雪原,等. 斜轴式液压变压器效率特性分析[J]. 农业机械学报, 2010, 40(12): 237-241.
JING Chong bo, WEI Chao, LI Xue yuan, et al. Research on efficiency characteristic of angle type hydraulic transformer [J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 40(12): 237-241.
[19] 徐兵, 马吉恩, 杨华勇. 液压变压器瞬时流量特性分析[J]. 机械工程学报, 2007, 43(11): 44-49.
XU Bing, MA Ji en, YANG Hua yong. Analysis of instantaneous flow rate character of hydraulic transformer [J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 4449.
[20] 张庆永, 常思勤. 液驱混合动力车辆液压系统建模及仿真[J]. 南京理工大学:自然科学版, 2008, 32:701-706.
ZHANG Qing yong, CHANG Si qin. Modeling and simulation on hydraulic system of hydraulic hybrid vehicles [J]. Journal of Nanjing University of Science and Technology:Nature Science, 2008, 32: 701-706.
[21] FERREIRA F J T E, DE ALMEIDA A T. Method for in field evaluation of the stator winding connection of three phase induction motors to maximize efficiency and power factor [J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 370-379.
[22] 王海燕, 魏秀业. 轴向柱塞泵流量脉动特性的仿真研究[J].机床与液压, 2014: 144-148.
WANG Hai yan, WEI Xiu ye. Simulation study on the flow pulsation characteristics of axial piston pump [J]. Machine Tool and Hydraulics, 2014: 144-148.
[23] 刘顺安, 谢丹彤, 尚涛, 等. 基于分数阶PID的液压变压器配流盘控制性能[J]. 北京工业大学学报, 2013, 39(10): 1452-1458.
LIU Shun an, XIE Dan tong, SHANG Tao, et al. Control strategy of the value plant of hydraulic transformer based on fractional order PID controller [J]. Journal of Beijing University of Technology, 2013, 39(10): 1452-1458.
[24] 刘贻欧, 于俊, 黄亚农, 等. 负载敏感液压变压器响应特性[J]. 舰船科学技术, 2013, 35(8):81-85.
LIU Yi ou, YU Jun, HUANG Ya nong, et al. Response characteristics analysis of the load sensing hydraulic transformer [J]. Ship Science and Technology, 2013, 35(8): 81-85.

[1] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.