Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
面向螺旋铣制孔过程的压脚压紧力优化
毕运波1 ,李夏2 ,严伟苗1 ,沈立恒3 , 朱宇3 ,方伟3
1. 浙江大学 机械工程学院,浙江 杭州 310027; 2. 中航工业西安飞行自动控制研究所,陕西 西安 710065;3. 上海飞机制造有限公司,上海 200436
Pressure force optimization of press foot device for orbital drilling process
BI Yun bo1, LI Xia2, YAN Wei miao1, SHEN Li heng3, ZHU Yu3, FANG Wei3
1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;2.AVIC Xi’an Flight Automatic Control Research Institute, Xi’an 710065, China;3.Shanghai Aircraft Manufacturing Limited Company, Shanghai 200436, China
 全文: PDF(2595 KB)   HTML
摘要:

为了优化机器人螺旋铣制孔过程中末端执行器的压脚压紧力取值, 提高末端执行器与工件的接触刚度, 消除压紧力取值对加工孔的孔径精度、表面粗糙度、孔位偏差等的影响, 采用解析法确定压紧力取值的许用范围. 通过建立螺旋铣制孔过程有限元仿真模型, 研究许用范围内不同压紧力对加工孔质量的影响, 给出压脚压紧力的最优值. 通过制孔实验对比分析不同压紧力下的加工孔质量, 实验结果表明, 在优化后的压脚压紧力作用下, 加工孔的圆柱度可以有效控制在0.013 mm以内, 孔的内壁表面粗糙度可以提升至1.6 μm以内.

Abstract:

The internal stress of workpiece was analytically calculated during the robotic orbital drilling in order to optimize the pressure force of press foot to improve the contact stiffness between the end effector and workpiece, and eliminate the effects of it on the aperture precision, surface roughness and deviation of hole position. The range of allowable pressure force was derived. Then the simplified finite element model of orbital drilling was established to compare how the different pressure force affects the holes quality, and the optimum pressure force was concluded. The quality of each hole drilled under different pressure force was compared in orbital drilling experiment. Results showed that hole cylindricity was successfully controlled within 0.013 mm and hole surface roughness was controlled within 1.6 μm after pressure force optimization.

出版日期: 2016-03-31
:  TH 16  
基金资助:

国家自然科学基金资助项目(51275463, 51205352) .

通讯作者: 严伟苗, 男, 博士后. ORCID: 0000 0001 9523 6195.     E-mail: yanweimiao@zju.edu.cn
作者简介: 毕运波(1979-), 男, 副教授, 从事飞机数字化装配技术的研究. ORCID: 0000 0002 6270 3030. E-mail: zjubyb@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

毕运波,李夏,严伟苗,沈立恒, 朱宇,方伟. 面向螺旋铣制孔过程的压脚压紧力优化[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.01.015.

BI Yun bo, LI Xia, YAN Wei miao, SHEN Li heng, ZHU Yu, FANG Wei. Pressure force optimization of press foot device for orbital drilling process. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.01.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.01.015        http://www.zjujournals.com/eng/CN/Y2016/V50/I1/102

[1] 费少华, 方强, 孟祥磊, 等. 基于压脚位移补偿的机器人制孔锪窝深度控制 [J]. 浙江大学学报:工学版, 2012, 46(7): 1157-1161.
FEI Shao hua, FANG Qiang, MENG Xiang lei, et al. Countersink depth control of robot drilling based on pressure foot displacement compensation [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(7): 1157-1161.
[2] 顾金伟. 飞机壁板机器人自动化制孔控制系统开发 [D]. 杭州: 浙江大学, 2012.
GU Jin wei. Development of robotic automatic drilling control system of aircraft panel [D]. Hangzhou: Zhejiang University, 2012.
[3] 邹方. 飞机装配迎来机器人时代 [J]. 航空制造技术, 2009, 24: 34-37.
ZOU Fang. Robotic era for aircraft assembly [J]. Aeronautical Manufacturing Technology, 2009, 24: 34-37.
[4] OLSSON T, HAAGE M, KIHLMAN H, et al. Cost efficient drilling using industrial robots with high bandwidth force feedback [J]. Robotics and Computer Integrated Manufacturing, 2010, 26(1): 24-38.
[5] DEVLIEG R. ONCE(One sided cell end effector) robotic drilling system [R]. Washington, DC: SAE, 2002.
[6] HELLSTERN C. Investigation of interlayer burr formation in the drilling of stacked aluminum sheets [D]. Atlanta: Georgia Insitute of Technology, 2009.
[7] 王珉, 薛少丁, 蒋红宇, 等. 飞机大部件对接自动化制孔单向压紧力分析 [J]. 南京航空航天大学学报, 2012, 44(4): 553-558.
WANG Min, XUE Shao ding, JIANG Hong yu, et al. One side pressure force analysis of automatic drilling of aircraft fuselage section joint assembly [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(4): 553-558.
[8] 卜泳, 许国康, 肖庆东. 飞机结构件的自动化精密制孔技术 [J]. 航空制造技术, 2009, 24: 61-64.
BU Yong, XU Guo kang, XIAO Qing dong. Automatic precision drilling technology of aircraft structural part [J]. Aeronautical Manufacturing Technology, 2009, 24: 61-64.
[9] BRINKSMERIER E, FANGMANN S, MEYER I. Orbital drilling kinematics [J]. Production Engineering, 2008, 2(3) : 277-284.
[10] WHINNEM E. Development and deployment of orbital drilling at Boeing [R]. Washington, DC: SAE, 2006.
[11] 迟秀. 典型机械连接结构有限元建模与实验验证研究 [D]. 南京: 南京理工大学, 2012.
CHI Xiu. Finite modeling and experiment research of typical mechanical joint structures [D]. Nanjing: Nanjing University of Science and Technology, 2012.
[12] 徐秉业, 刘信生. 应用弹塑性力学[M]. 北京:清华大学出版社, 2001.
[13] LIANG Jie. The formation and effect of interlayer gap in dry drilling of stacked metal materials [J]. International Journal of Advannced Manufacturing Technology, 2013, 69(5/6/7/8): 1263-1272.
[14] 成群林, 柯映林, 董辉跃. 航空铝合金铣削加工中切削力的数值模拟研究[J]. 航空学报, 2006, 27(4): 724-727.
CHENG Qun lin, KE Ying lin, DONG Hui yue. Numerical simulation study on milling force for aerospace aluminum [J]. Acta Aeronautica Et Astronautica Sinica, 2006, 27(4): 724727.
[15] 方垒. 环形轨道制孔系统动、静态特性的有限元分析 [D]. 杭州: 浙江大学, 2013.
FANG Lei. Analysis of static and dynamic characters of circumferential flex track drilling system [D]. Hangzhou: Zhejiang University, 2013.
[16] 刘富, 张嘉振, 童明波, 等. 2024 T3铝合金动力学实验及其平板鸟撞动态响应分析[J]. 振动与冲击, 2014, 33(4): 113-118.
LIU Fu, ZHANG Jia zhen, TONG Ming bo, et al. Dynamic tests and bird impact dynamic response analysis for a 2024 T3 aluminum alloy plate [J]. Journal of Vibration and Shock, 2014, 33(4): 113-118.

[1] 何雪军, 王进, 陆国栋, 刘振宇, 陈立, 金晶. 基于三角网切片及碰撞检测的工业机器人三维头像雕刻[J]. 浙江大学学报(工学版), 2017, 51(6): 1104-1110.
[2] 曲巍崴, 卢贤刚, 杨迪. 预连接工艺对壁板动态特性的影响分析[J]. 浙江大学学报(工学版), 2017, 51(2): 336-343.
[3] 王自立, 张树有, 裘乐淼. 基于可信度区间的注塑装备设计塑化能耗分析[J]. 浙江大学学报(工学版), 2017, 51(2): 328-335.
[4] 王越, 苏宏业, 邵寒山, 卢山,谢磊. 需求与公用工程不确定的生产计划与调度集成[J]. 浙江大学学报(工学版), 2017, 51(1): 57-67.
[5] 罗仕鉴, 董烨楠. 面向创意设计的器物知识分类研究[J]. 浙江大学学报(工学版), 2017, 51(1): 113-123.
[6] 文贤鹤, 周晓军, 杨辰龙. 云制造模式车辆试验服务平台构建方法[J]. 浙江大学学报(工学版), 2016, 50(12): 2254-2261.
[7] 何雪军,王进,陆国栋,陈立. 岛中含湖型截面的环切刀轨连接方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1654-1661.
[8] 过海,王进,陆国栋. 金属板坯道次间变进给率普通旋压方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1646-1653.
[9] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[10] 刘征宏, 谢庆生, 李少波, 林丽. 基于潜在语义分析和感性工学的用户需求匹配[J]. 浙江大学学报(工学版), 2016, 50(2): 224-233.
[11] 吴海曦,余忠华,张浩,杨振生,WANG Yan. 面向熔融沉积成型的3D打印机故障声发射监控方法[J]. 浙江大学学报(工学版), 2016, 50(1): 78-84.
[12] 毕运波,吴原骅,朱伟东,沈立恒,黄稳,朱宇. 飞机叠层结构预联接工艺优化[J]. 浙江大学学报(工学版), 2015, 49(11): 2040-2046.
[13] 董辉跃,朱灵盛, 章明, 李少波,罗水均. 飞机蒙皮切边的螺旋铣削方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2033-2039.
[14] 冯刚,付国强,孙磊,傅建中. 多轴数控机床转台几何误差辨识新方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2083-2091.
[15] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.