Performance of sewage treatment by integrated system of bioelectrogenesis and constructed wetland" /> 生物产电人工湿地系统对处理生活污水的效能
Please wait a minute...
浙江大学学报(工学版)
环境工程     
生物产电人工湿地系统对处理生活污水的效能
杨广伟, 姜珺秋, 王琨, 赵庆良, 李伟
哈尔滨工业大学 市政环境工程学院,黑龙江 哈尔滨 150090
Performance of sewage treatment by integrated system of bioelectrogenesis and constructed wetland
YANG Guang-wei, JIANG Jun-qiu, WANG Kun, ZHAO Qing-liang, LI Wei
School of Municipal and Environment Engineering, Harbin Institute of Technology, Harbin 150090, China
 全文: PDF(1667 KB)   HTML
摘要:

针对人工湿地系统中污染物净化速率缓慢的问题, 构建生物产电人工湿地(MFC-CW)系统,在处理生活污水的同时将污水中的化学能以电能的形式回收.启动以美人蕉为湿地植物的MFC-CW系统,研究不同水力停留时间(HRT)下该系统对生活污水中常规污染物的处理效果以及产电性能.结果表明:随着水力停留时间的长,MFC-CW系统对污水中COD的降低率和NH+4-N的去除率呈现先升高后降低的趋势,悬浮物(SS)的去除效率逐渐提高, 系统的内阻逐渐增大,功率密度逐渐减小,库仑效率逐渐增加.阴极溶解氧(DO)浓度的降低导致阴极电极的电势降低,对阴极采用间歇曝气模式可以在保证电压稳定输出的同时降低系统能耗.

Abstract:

Aiming at the low purification rate of pollutants in the constructed wetland system, a microbial fuel cell-constructed wetland(MFC-CW) system was developed to recycle the chemical energy in sewage by the form of electricity energy while dealing with the domestic sewage. A MFC-CW system with canna planted was started for investigation. The treatment efficiency and electricity generation performance of the MFC-CW system on normal pollutants in domestic sewage were studied under different hydraulic retention time (HRT). Results showed that with the extension of HRT reduction rate of COD and the removal efficiencies of NH+4-N first increase and then decrease, and that of suspend solid (SS) increases gradually. The internal resistance and Columbic efficiency of the MFC-CW system increase with the extension of HRT, while the power density decreases gradually. The decrease of dissolved oxygen (DO) of cathodic chamber make cathodic potential decrease. Intermittent aeration mode in cathodic chamber can reduce the system power consumption while the ensuring the steady voltage output.

出版日期: 2015-06-01
:  X 505  
基金资助:

国家自然科学基金资助项目 (51206036,51308152)

通讯作者: 姜珺秋,女,副教授,博士     E-mail: jiangjq_hit@126.com
作者简介: 杨广伟(1987—),男,硕士生,从事污水与污泥处理及生物产电研究.E-mail: ygw198781@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨广伟, 姜珺秋, 王琨, 赵庆良, 李伟. 生物产电人工湿地系统对处理生活污水的效能[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.06.026.

YANG Guang-wei, JIANG Jun-qiu, WANG Kun, ZHAO Qing-liang, LI Wei.

Performance of sewage treatment by integrated system of bioelectrogenesis and constructed wetland
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.06.026.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.06.026        http://www.zjujournals.com/eng/CN/Y2015/V49/I6/1186

[1] 梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2): 49-55.
LIANG Ji-dong, ZHOU Qi-xing, SUN Tie-heng. A research review and technical improvement analysis of constructed wetland systems for wastewater treatment [J]. Chinese Journal of Ecology, 2003, 22(2): 49-55.
[2] LOGAN B E. Simultaneous wastewater treatment and biological electricity generation [J]. Water Science and Technology, 2005, 52(1): 31-37.
[3] ZHAO Y, SEAN C, MARK P, et al. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials [J]. Chemical Engineering Journal, 2013, 229: 364-370.
[4] YADAV A K, DASH P, MOHANTY A, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal [J]. Ecological Engineering, 2012, 47: 126-131.
[5] FANG Z, SONG H, CANG N, et al. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation [J]. Bioresource Technology, 2013, 144: 165-171.
[6] STRIK D, HAMALERS H, SNEL J, et al. Green electricity production with living plants and bacteria in a fuel cell [J]. International Journal of Energy Research, 2008,32(9): 870-876.
[7] 杨长明,顾国泉,李建华,等.潜流人工湿地系统停留时间分布与N、P浓度空间变化[J].环境科学,2008,29(11): 3043-3048.
YANG Chang-ming, GU Guo-quan, LI Jian-hua, et al. Residence time distributions and spatial variation of N, P in the subsurface-flow constructed wetlands for purification of eutrophic aquaculture water [J]. Environment Science, 2008, 29(11): 3043-3048.
[8] LIU H, CHENG S, HUANG L, LOGAN B E. Scale-up of membrane-free single-chamber microbial fuel cells [J]. Journal of Power Sources, 2008, 179: 274-279.
[9] BOND D R, LOVLEY D R. Electricity production by geobacter sulfurreducens attached to electrodes [J].Applied and Environmental Microbiology, 2003, 69(3): 1548-1555.
[10] 国家环境保护总局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002: 105-284.
[11] ZHANG F, GE Z, GRIMAUD J, et al. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility [J]. Environmental Science and Technology, 2013, 47 (9): 4941-4948.
[12] 张永勇,张光义,夏军,等.湿地污水处理机理的研究[J].环境科学与技术,2005,28(6): 165-167.
ZHANG Yong-yong, ZHANG Guang-yi, XIA Jun, et al. The research of wastewater treatment mechanism in wetland [J]. Journal of Environmental Science and Technology, 2005,28(6): 165-167.
[13] KARATHANASIS A D, POTTER C L, COYNE M S. Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater [J]. Ecological Engineering, 2003, 20(2): 157-169.
[14]  吴娟.人工湿地污水处理系统N2O的释放与相关微生物研究[D].济南:山东大学,2009: 10-11.
WU Juan. Study on the emission of N2O and the related microorganism in constructed wetland [D]. Jinan: Shandong University, 2009: 10-11.
[15] 王华金,朱能武,李冲,等.微生物燃料电池阳极生物膜微生物群落的PCR-DGGE分析[J].农业环境科学学报,2012,31(7): 14311437.
WANG Hua-jin, ZHU Neng-wu, LI Chong, et al. Microbial community of anodic biofilm of microbial fuel cells revealed by PCR-DGGE analysis [J]. Journal of Agro-Environment Science, 2012, 31(7): 1431-1437.
[16] ROZENDAL R A, HAMELERS H, BUISMAN C. Effect of membrane cation transport on pH and microbial fuel cell performance [J]. Environmental Science and Technology, 2006, 40(17): 5206-5221.
[17] 杨文卿,邓旋,许兢,等.一种新型可控堆肥反应器系统的快速好氧堆肥实验[J].环境工程学报,2010,4(12): 2883-2887.
YANG Wen-qing, DENG Xuan, XU Jing, et al. High-efficient aerobic composting process by means of a new controllable composting reactor system [J]. Chinese Journal of Environmental Engineering, 2010, 4(12): 2883-2887.
[18]  LEROPOULOS L, WINFIELD J, GREENMAN J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells [J]. Bioresource Technology, 2010, 101(10): 3520-3525.
[19] 杨芳,李兆华,肖本益.微生物燃料电池内阻及其影响因素分析[J].微生物学通报,2011,38(7): 1098-1105.
YANG Fang, LI Zhao-hua, XIAO Ben-yi. Analysis of internal resistance and its influencing factors of MFC [J]. Microbiology China, 2011, 38(7): 1098-1105.
[20] 吴夏芫,宋天顺,朱旭君,等.不同湿地植物构建植物沉积型微生物燃料电池的研究[J].可再生能源,2013,31(9): 78-82.
WU Xia-yuan, SONG Tian-shun, ZHU Xu-jun, et al. Research on different wetland plants to construct the plant-sediment microbial fuel cell [J]. Renewable Energy Resources, 2013, 31(9): 78-82.
[21] OH S E, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells [J]. Environmental Science and Technology, 2004, 38(8): 4900-4904.
[1] 黄更,姜珺秋,赵庆良,于航,王琨. 生物产电加速厌氧堆肥污泥降解及产电性能[J]. J4, 2013, 47(5): 883-888.