Effects of external load on energy conversion of vortex-induced vibrating cylinder" /> 外界载荷对圆柱涡激振动能量转换的影响
Please wait a minute...
浙江大学学报(工学版)
电气工程     
外界载荷对圆柱涡激振动能量转换的影响
王军雷, 冉景煜, 张智恩, 张力, 蒲舸, 丁林
重庆大学 低品位能源利用技术及系统教育部重点实验室,重庆400044
Effects of external load on energy conversion of vortex-induced vibrating cylinder
WANG Jun-lei, RAN Jing-yu, ZHANG Zhi-en, ZHANG Li, PU Ge, DING Lin
Key Laboratory of Low-grade Energy Utilisation Technologies and Systems, Ministry of Education of China,  Chongqing University, Chongqing 400044, China
 全文: PDF(3063 KB)   HTML
摘要:

为了提高涡激振动的能量收集效率,研究外界载荷对三相耦合圆柱绕流涡激振动能量转换的影响.使用矩阵法分析外界载荷对涡激振动能量转换系统阻尼和固有频率的影响,并使用准稳态近似理论推导获得机电耦合系统电压输出的准稳态解析式.在此基础上,应用OpenFOAM开源平台对Navier-Stokes、二阶范德波尔方程和高斯定律进行涡激振动耦合计算.结果表明:当外界载荷增大时,系统阻尼先增大后减小,圆柱振幅曲线峰值和锁振区域先减小后增大,输出电压和电压曲线的锁振区域相应增大,而固有频率基本不变;系统输出功率随着载荷的增大出现先增大后减小的趋势;当满足98<Re<103时,输出电压及功率较大,可以实现圆柱涡激振动高效率的能量转换.

Abstract:

Impact of external load on energy conversion of vortex-induced vibration in three-phase coupling flow around cylinder was studied in order to improve its efficiency of energy harvesting. The effects of external load on the systematic damping and natural frequency of energy conversion in vortex-induced vibration were examined using matrix method. A quasi-steady solution form of voltage output in the electromechanical coupling system was induced via the quasi-steady approximation method. Based on the open-source platform of OpenFOAM software, coupling calculation for the vortex-induced vibration was taken on Navier-stokes equation, second-order Van der pol equation and Gauss law. Results showed that, with the increase of external load, the systematic damping first increases then decreases, the peak values and the lock-in region of the cylinder amplitude curve first decreases then increases, and the output voltage and the lock-in region of the voltage curve increases, while the natural frequency basically remains unchanged. In the range of Reynolds number from 98 to 103, the considerable values of voltage and power output can make high-efficiency energy conversion of cylindrical vortex-induced vibration.

出版日期: 2015-06-01
:  O 353  
基金资助:

高等学校博士学科点专项科研基金优先发展资助项目(20120191130003)

通讯作者: 冉景煜,男,教授,博导     E-mail: ranjy@cqu.edu.cn
作者简介: 王军雷(1988—),男,博士生,从事圆柱绕流涡激振动方向研究. E-mail:just4pipi@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王军雷, 冉景煜, 张智恩, 张力, 蒲舸, 丁林. 外界载荷对圆柱涡激振动能量转换的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.06.013.

WANG Jun-lei, RAN Jing-yu, ZHANG Zhi-en, ZHANG Li, PU Ge, DING Lin.

Effects of external load on energy conversion of vortex-induced vibrating cylinder
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.06.013.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.06.013        http://www.zjujournals.com/eng/CN/Y2015/V49/I6/1093

[1] GAO X, SHIH W H, SHIH W Y. Flow energy harvesting using piezoelectric cantilevers with cylindrical extension [J]., IEEE Transactions on Industrial Electronics, 2013, 60(3): 1116-1118.
[2] XU B, CHEN X. Liquid flow-induced energy harvesting in carbon nanotubes: a molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2012, 15(4): 1164-1168.
[3] LIU H,TAY C J, QUAN C,et al.Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power [J].Journal of Microelectromechanical Systems, 2011, 20(5):1131-1142.
[4] ALLEN J J, SMITS A J. Energy harvesting eel [J]. Journal of Fluids and Structures, 2001, 15(3): 629-640.
[5] TAYLOR G W, BURNS J R, KAMMANN S M, et al. The energy harvesting eel: a small subsurface ocean/river power generator [J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 539-547.
[6] KWON,S D. A T-shaped piezoelectric cantilever for fluid energy harvesting [J]. Applied Physics Letters, 2010, 97(16): 164-102(1-3).
[7] MEHMOOD A, ABDELKEFI A, HAJJ M R, et al. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder [J]. Journal of Sound and Vibration, 2013, 332(19): 4656-4667.
[8] ZHU M L,LEIGHTON G. Dimensional reduction study of piezoelectric ceramics constitutive equations from 3-D to 2-D and 1-D [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2008, 55(11): 2377-2383.
[9] 丁文镜.自激振动[M].北京:清华大学出版社, 2009.
[10] ANAGNOSTOPOULOS P, BEARMAN P. Response characteristics of a vortex-excited cylinder at low reynolds numbers[J]. Journal of Fluids and Structures, 1992, 6(1): 39-50.
[11] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al. VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(4): 041101.
[12] RAGHAVAN K, BERNITSAS M M. Experimental investigation of reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports [J]. Ocean Engineering, 2011, 38(5): 719-731.
[13] WU W, BERNITSAS M M, MAKI K. RANS simulation vs. experiments offlowinduced motion of circular cylinder with passive turbulence control at 35,000≤Re≤130,000[C]∥ Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam: ASME, 2011: 733-744.
[14] DING L, BERNITSAS M M, KIM E S. 2-D URANS vs. experiments of flow induced motions of two circular cylinders in tandem with passive turbulence control for 30,000≤Re≤105,000[J]. Ocean Engineering, 2013, 72: 429-440.
[15] MOLINO-MINERO-RE E, CARBONELL-VENTURA M, FISAC-FUENTES C, et al. Piezoelectric energy harvesting from induced vortex in water flow[C]∥ Proceedings of Instrumentation and Measurement Technology Conference (I2MTC). Graz: IEEE, 2012: 624-627.
[16] 丁林,张力,杨仲卿.高雷诺数时分隔板对圆柱涡致振动的影响[J].机械工程学报,2013,49(14): 133-139.
DING Lin, ZHANG Li, YANG Zhong-qing. Effect of splitter plate on vortex-induced vibration of circular cylinder at high reynolds number[J]. Chinese Journal of Mechanical Engineering, 2013, 49(14): 133-139.
[17] BARRERO-GIL A, ALONSO G, SANZ-ANDRES A. Energy harvesting from transverse galloping [J]. Journal of Sound and Vibration, 2010, 329(14): 2873-2883.
[18] BARRERO-GIL A, SANZ-ANDRS A, ALONSO G. Hysteresis in transverse galloping: the role of the inflection points[J]. Journal of Fluids and Structures, 2009, 25(6): 1007-1020.
[19] MORSE T L, WILLIAMSON C H K. Steady, unsteady and transient vortex-induced vibration predicted using controlled motion data [J]. Journal of Fluid Mechanics, 2010, 649: 429-451.
[20] YANG J, PREIDIKMAN S, BALARAS E. A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies [J]. Journal of Fluids and Structures, 2008, 24(2): 167-182.
[21] SCHULZ K W, KALLINDERIS Y. Unsteady flow structure interaction for incompressible flows using deformable hybrid grids[J]. Journal of Computational Physics, 1998, 143(2): 569-597.
[22] 李宁,程礼.压电分流阻尼的虚拟实现[J].空军工程大学学报:自然科学版, 2008,9(4): 59-63.
LI Ning, CHENG Li. Virtual implemention method of piezoelectric shunt damping[J]. Journal of Air Force Engineering University: Natural Science Edition, 2008, 9(4): 59-63.
[23] AKAYDIN H D, ELVIN N, ANDREOPOULOS Y. Energy harvesting from highly unsteady fluid flows using piezoelectric materials [J]. Journal of Intelligent Material Systems and Structures, 2010, 21(13): 1263-1278.
No related articles found!