Please wait a minute...
浙江大学学报(工学版)
能源工程与动力工程     
高频交流电场的频率对预混稀燃火焰的影响
崔雨辰1,段浩1,张聪1,吴筱敏1,2
1. 西安交通大学 能源与动力工程学院,陕西 西安 710049;2. 陕西理工学院 陕西省工业自动化重点实验室,陕西 汉中 723001
Effects of frequencies of high-frequency alternating electric fields on premixed lean combustion
CUI Yu-chen1, DUAN Hao1, ZHANG Cong1, WU Xiao-min1,2
1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;2. Shaanxi key Laboratory of Industrial Automation Shaanxi University of Technology, Hanzhong 723001, China
 全文: PDF(2081 KB)   HTML
摘要:

为了比较不同频率的高频交流电场在辅助燃烧方面的作用,对常温、常压下定容燃烧弹中网状电极结构下的电场对甲烷/空气预混稀燃火焰的火焰形状、火焰传播速度、燃烧压力的影响进行研究.结果表明:在高频交流电场作用下,火焰均在水平方向被拉伸,且频率越高,拉伸越剧烈,平均火焰传播速度和燃烧压力均随着交流电频率的增加而增加;混合气越稀,电场对火焰的作用效果越明显,与未加电压相比,当交流电压有效值为5 kV,交流电频率为25 kHz,过量空气系数为1.2、1.4和1.6时,平均火焰传播速度分别提高45.77%、50.00%和87.93%,相对燃烧压力增大率的最大值分别为0.51、0.66和0.86.

Abstract:

 An experiment was conducted in a constant volume combustion bomb under a lean combustion condition to compare the roles of different frequencies of high-frequency alternating electric fields in promoting combustion process. The different effects of high-frequency alternating electric fields with the mesh electrode on the flame shape, propagation speed and combustion pressure of premixed CH4/air mixtures were also analyzed at room temperature and atmospheric pressure. The results show that the flame is stretched in the horizontal when high-frequency alternating electric field is applied to the electrodes and  is stretched more severely with the frequency increase. The average flame propagation speed and combustion pressure also increase with the frequency. In addition, the effect of electric field on the flame is greater when the mixture is diluted. Compared with those without the applied voltage, when the voltage virtual value is 5 kV and the frequency is 25 kHz, the average flame propagation speeds at the excess air ratio of 1.2, 1.4 and 1.6 increase by 4577%, 50.00% and 87.93%; the maxima of the increasing rate of relative combustion pressure are 0.51, 0.66 and 0.86, respectively.

出版日期: 2015-12-26
:  TK 431  
基金资助:

国家自然科学基金资助项目(51176150,51476126);清华大学汽车安全与节能国家重点实验室开放基金资助项目(KF14122)

通讯作者: 吴筱敏,女,教授,博导     E-mail: xmwu@mail.xjtu.edu.cn
作者简介: 崔雨辰(1991-),女,硕士生,从事电场辅助燃烧的研究工作.E-mail:jsdtcyc@stu.xjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

崔雨辰,段浩,张聪,吴筱敏. 高频交流电场的频率对预混稀燃火焰的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.05.019.

CUI Yu-chen, DUAN Hao, ZHANG Cong, WU Xiao-min. Effects of frequencies of high-frequency alternating electric fields on premixed lean combustion. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.05.019.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.05.019        http://www.zjujournals.com/eng/CN/Y2015/V49/I5/944

[1] CESSOU A, VAREA E, CRINER K, et al. Simultaneous measurements of OH, mixture fraction and velocity fields to investigate flame stabilization enhancement by electric field [J]. Experiments in Fluids, 2012, 52(4): 905-917.
[2]  ALTENDORFNER F, KUHL J, ZIGAN L, et al. Study of the influence of electric fields on flames using planar LIF and PIV techniques [J]. Proc Combust Inst, 2011, 33(2): 3195-3201.
[3]  BELHI M, DOMINGO P, VERVISCH P. Direct numerical simulation of the effect of an electric field on flame stability [J]. Combustion and Flame, 2010, 157(12): 2286-2297.
[4]  VEGA E V, LEE K Y. An experimental study on laminar CH4/O2/N2 premixed flames under an electric field [J]. Journal of Mechanical Science Technology, 2008, 22(2): 312-319.
[5]  WANG Y, NATHAN G J, ALWAHABI Z, et al. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames [J]. Combustion and Flame, 2010, 157(7): 1308-1315.
[6]  PARK D G, CHOI B C, CHA M S, et al. Soot reduction under DC electric fields in counter-flow non-premixed laminar ethylene flames [J]. Combustion Science and Technology, 2014, 186(4/5): 644-656.
[7] KIM M K, RYU S K, WON S H, et al. Electric fields effect on liftoff and blow-off of non-premixed laminar jet flames in a co-flow[J]. Combustion and Flame, 2010, 157(1): 17-24.
[8] ZHANG Y, WU Y, YANG H, et al. Effect of high-frequency alternating electric fields on the behavior and nitric oxide emission of laminar non-premixed flames[J]. Fuel, 2013, 109(0): 350-355.
[9] MENG X W, WU X M, KANG C, et al. Effects of direct-current (DC) electric fields on flame propagation and combustion characteristics of premixed CH4/O2/N2 flames [J]. Energy & Fuels, 2012, 26(11): 6612-6620.
[10] OMBRELLO T, WON SH, JU Y, et al. Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3[J]. Combustion and Flame, 2010; 157(10): 190615.
[11] SUN WT, UDDI M, OMBRELLO T, et al. Effects of non-equilibrium plasma discharge on counter-flow diffusion flame extinction [J]. Proc Combust Inst, 2011; 33(2): 32118.
[12]  SUN W, UDDI M, WON SH, et al. Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits[J]. Combustion and Flame, 2012; 159(1): 2219.
[13] HUANG ZH, ZHANG Y, ZENG K, et al. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures [J]. Combustion and Flame, 2006; 146(1-2): 30211.
[14]  蒋德明. 内燃机燃烧与排放学[M]. 西安:西安交通大学出版社, 2001: 165-167, 186-187.
[15]  MENG XW, WU XM, LIU J, et al. Effects of direct-current (DC) electric fields on flame propagation and combustion characteristics of lean premixed CH4/O2/N2 flames [J]. SAE Technical Paper, 2013, 2013-01-0309.

[1] 李春艳,张功,刘杰,高忠权. 排除法确定离子电流成因的试验[J]. 浙江大学学报(工学版), 2016, 50(5): 978-983.