Please wait a minute...
浙江大学学报(工学版)
水利工程、土木工程     
河口泥沙数学模型的若干问题
孙志林, 倪晓静, 许丹, 聂会
浙江大学 港口海岸与近海工程研究所,浙江 杭州 310058
Some problems on mathematical model of sediment transport in Estuary
SUN Zhi-lin, NI Xiao-jing, XU Dan, NIE Hui
Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(749 KB)   HTML
摘要:

针对泥沙数学模型作为预报河床冲淤的研究手段在进一步发展中受到有关物理参数的限制,分析河口泥沙数学模型涉及的若干关键问题.从三维微分方程竖向积分角度分析认为恢复饱和系数理论上应大于1;指出泥沙非均匀系数、相对粒级以及泥沙固结对河口冲淤有一定影响,给出适用于河口非均匀黏性沙的任意k粒级的黏性力表达式、起动概率公式和临界起动切应力公式,探讨临界淤积切应力表达式在处理细颗粒泥沙絮凝时的作用;认为根据最大或最小含沙量对应的水流泥沙要素来确定河口水流挟沙能力公式比以往按半潮平均来处理在理论上更为合理,提出适合潮汐河口的非恒定水流挟沙能力公式;指出数值计算和验证有待改进之处.

Abstract:

Mathematical model of sediment has become an essential research approach to predict erosion and deposition in estuaries. However, the further development of the model was limited by the related physical parameters. According to this limitation, it analyzed some key problems involved in the mathematical model for estuarine sediment transport. From the perspective of vertical integration of the three dimensional differential equation, the result of the equation analysis shows that the recovery saturation coefficient should be greater than 1 unit theoretically; it indicated that the sediment non-uniform coefficient, relative particle size and sediment consolidation all have some effects on erosion/deposition process of estuary, provide suitable mathematical expressions for cohesive force of arbitrary K gradation, incipient probability and critical incipient shear stress of non-uniform cohesive sediment in estuary, discussed the role of critical deposition shear stress in dealing with the flocculation of fine sediment. It argued that it will be more reasonable that the formula for sediment transport capacity of flow is determined by the water and sediment parameters corresponding to the maximum or minimum sediment concentration than by the averaged ones in theory. And also, it presented the formula for carrying capacity of unsteady water; pointed out the numerical calculation and the problem of imperfect verification.

出版日期: 2015-02-01
:  TV 14  
基金资助:

教育部博士点基金资助项目(20120101110108);国家科技重大专项课题资助项目(2009ZX07424-001); 浙江省科技厅优先主题重点社会发展资助项目(2009C03016)

通讯作者: 许丹,女,助理研究员     E-mail: darrenxu@zju.edu.cn
作者简介: 孙志林(1956—),男,教授,博导,主要从事水沙动力学与河口海岸数值模拟研究. E-mail: oceansun@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孙志林, 倪晓静, 许丹, 聂会. 河口泥沙数学模型的若干问题[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.02.006.

SUN Zhi-lin, NI Xiao-jing, XU Dan, NIE Hui. Some problems on mathematical model of sediment transport in Estuary. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.02.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.02.006        http://www.zjujournals.com/eng/CN/Y2015/V49/I2/232

[1] 谢鉴衡,魏良琰. 河流泥沙数学模型的回顾与展望[J]. 泥沙研究,1983,3: 315.
XIE Jian-heng, WEI Liang-yan. Review and prospect of mathematical models for river sedimentation [J]. Journal of Sediment Research, 1983, 3: 315.
[2] VAN RI JN L C.Mathematical modeling of morphological processes in the case of suspended sediment transport. [J].Hydr Div,ASCE,1987,113(3): 981-994.
[3] 窦国仁, 赵士清, 黄亦芬. 河道二维全沙数学模型研究[J]. 水利水运科学研究, 1987, 2: 112.
DOU Guo-ren, ZHAO Shi-qing, HUANG Yi-fen. Study on two-dimensional total sediment transport mathematic model [J]. Hydro-Science and Engineering, 1987, 2: 112.
[4] LIN B,SHEN H. Two-D flow with sediment by characteristics method [J]. Journal of Hydraulic Engineering, 1984, 110(5): 536-547.
[5] ZHOU Jian-jun, LIN Bing-nan. 2-D mathematical model for suspended sediment Part I: model theories and validations [J]. Journal of Basic Science and Engineering,1995, 3(1): 78-98.
[6] COLE P, MILES G V. Two-dimensional model of mud transport [J]. Journal of Hydraulic Engineering, 1983, 109(1): 112.
[7] O’CONNOR B A, NICHOLSON J. A three-dimensional model for suspended particulate sediment transport [J]. Coastal Engineering, 1988, 12: 157-173.
[8] WU W M, RODI W, WENKA T. 3D numerical modeling of flow and sediment transport in open channels [J]. Journal of Hydraulic Engineering, 2000, 126(1): 415.
[9] 丁平兴,孔亚珍,朱首贤,等.波-流共同作用下的三维悬沙输运数学模型[J].自然科学进展,2001,11(2): 147-152.
DING Ping-xing, KONG Ya-zhen, ZHU Shou-xian, et al. A three-dimensional diffusion equation of suspended sediment by waves and currents [J]. Progress in Natural Science, 2001,11(2): 147-152.
[10] 陆永军,窦国仁,韩龙喜,等.三维紊流悬沙数学模型及应用[J].中国科学(E辑),2004, 34(3): 311-328.
LU Yong-jun, DOU Guo-ren, HAN Long-xi, et al. Three dimensional mathematic model of suspended sediment transport and its application [J]. Science in China Ser. E Technological Sciences, 2004, 34(3): 311-328.
[11] EINSTEIN A. Eine neue bestimmung der mole-küldimensionen [J]. Annalen der Physik, 1906, 324(2): 289-306.
[12] 孙志林. 颗粒静水沉降的统一规律[J],杭州大学学报 1991, 17(2): 246-255.
SUN Zhi-lin. The general law for the fall velocity of particle in quiescent water [J]. Journal of Hangzhou University, 1991, 17(2): 246-255.
[13] 中国水利学会泥沙专业委员会主编. 泥沙手册[M]. 北京:中国环境科学出版社, 1992.
[14] 窦国仁, 董凤舞,窦希萍. 潮流和波浪的挟沙能力[J]. 科学通报,1995,40(5): 443-446.
DOU Guo-ren, DONG feng-wu, DOU X B. Sediment transport capacity in tidal currents and waves [J]. Chinese Science Bulletin, 1995,40(5): 443-446.
[15] 刘家驹. 在风浪和潮流作用下淤泥质浅滩含沙量的确定[J]. 水利水运工程学报, 1988(2): 69-73.
LIU Jia-ju. Determination of the silt concentration on shoal under the action of wind waves and tidal currents [J]. Hydro-Science and Engineering , 1988(2): 69-73.
[16] 孙志林,夏珊珊,朱晓,等.河口时变水流挟沙能力公式[J].清华大学学报:自然科学版,2010,50(3): 383-386.
SUN Zhi-lin, XIA Shan-shan, ZHU Xiao, et al. Formula of time-dependent sediment transport capacity in estuaries [J]. Journal of Tsinghua University :Science & Technology, 2010, 50(3): 383-386.
[17] SUN Z L, SUN Z F, JOHN D. Equilibrium bed-concentration of nonuniform sediment [J]. Journal of Zhejiang University-Science, 2003, 4(2): 186-194.
[18] PARTHENIADES E. Erosion and deposition of cohesive soils [J]. Journal of the Hydraulics Division, ASCE, 1965, 91 (HY 1): 105-139.
[19] KRONE R B. Flume studies of the transport of sediment in estuarial shoaling processes[R]. USA, Hyd. Eng. Univ of California, Berkeley: Lab. and Sanit. Eng. Res. Lab., 1962.
[20] 张瑞瑾. 河流泥沙动力学[M]. 北京: 中国水利水电出 版社, 1999.
[21] 孙志林,黄赛花,祝丽丽,等. 黏性非均匀沙的起动概率[J]. 浙江大学学报:工学版 2007,41(1): 18-22.
SUN Zhi-lin, HUANG Sai-hua, ZHU li-li, et al. Incipient probability of cohesive nonuniform sediment [J]. Journal of Zhejiang University :Engineering Science, 2007, 41(1): 18-22.
[22] 黄赛花,孙志林,祝丽丽. 潮汐河口动床洪水的数值模拟[J]. 水力发电学报, 2006, 25(5): 46-50.
HUANG Sai-hua, SUN Zhi-lin, ZHU Li-li. Numerical simulation of flood on movable bed of a tidal estuary [J]. Journal ofHydroelectric Engineering, 2006, 25(5): 46-50.
[1] 匡翠萍, 宋竑霖, 顾杰, 马震. 黄骅港风生流及紊动的三维特性[J]. 浙江大学学报(工学版), 2017, 51(1): 38-45.
[2] 郭聪,孙志林,郑浩磊,潘桂娥. 河口冲淤对围垦的响应[J]. 浙江大学学报(工学版), 2016, 50(9): 1791-1797.
[3] 张晓雷, 夏军强, 邓珊珊, 王增辉. 断面间距对黄河下游高含沙洪水模拟结果影响[J]. 浙江大学学报(工学版), 2016, 50(4): 735-743.
[4] 张文君,孙红月,潘攀,魏振磊. 泥石流虹吸排水分流池自清淤能力分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2159-2164.
[5] 胡德超, 池龙哲, 杨琼, 王敏. 水库坝区冲刷漏斗的形成机理[J]. 浙江大学学报(工学版), 2015, 49(2): 257-264.
[6] 夏军强, 宗全利, 邓珊珊, 许全喜, 张翼. 三峡工程运用后荆江河段平滩河槽形态调整特点[J]. 浙江大学学报(工学版), 2015, 49(2): 238-245.
[7] 范念念, 吴保生. 基于随机-动力学模型的非均匀推移质扩散[J]. 浙江大学学报(工学版), 2015, 49(2): 246-250.
[8] 周建银, 邵学军, 江磊, 假冬冬. 水库细颗粒淤积物的重力驱动流动[J]. 浙江大学学报(工学版), 2014, 48(12): 2254-2258.
[9] 孙志林, 杨仲韬, 高运, 许丹, 胡世祥. 长江分汊河口水力几何形态[J]. 浙江大学学报(工学版), 2014, 48(12): 2266-2270.
[10] 陈一帆, 程伟平, 蒋建群. 一种稳健的河流糙率反演方法[J]. J4, 2013, 47(8): 1361-1365.
[11] 张世瑕,王紫雯,吴赛男. 沿海围垦对防灾功能影响的景观生态机理研究
——以钱塘江河口海湾为例
[J]. J4, 2012, 46(7): 1281-1288.
[12] 李佳,姚炎明,孙志林,黄赛花,杨晓东. 大型海洋倾倒区悬浮物迁移扩散的数值模拟[J]. J4, 2011, 45(7): 1319-1328.
[13] 许丹, 孙志林. 钱塘江河口突发污染物扩散数值模拟分析[J]. J4, 2010, 44(9): 1767-1772.