Please wait a minute...
浙江大学学报(工学版)
土木工程     
长江分汊河口水力几何形态
孙志林, 杨仲韬, 高运, 许丹, 胡世祥
浙江大学 港口海岸与近海工程研究所,浙江 杭州 310058
Hydraulic geometry of branching channels in Yangtze estuary
SUN Zhi-lin, YANG Zhong-tao, GAO Yun, XU Dan, HU Shi-xiang
Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1487 KB)   HTML
摘要:

为了揭示潮汐河口中居显著地位分汊河口的演变机理,减轻长江口深水航道淤积.基于积分形式二维连续方程、二维阻力公式、无因次宽深比关系与时变水流挟沙能力公式,建立分汊河口水力几何形态理论关系,且表明汊道与单一河道平均水深之比为分流比的2/7次方.据此计算获得了长江口拦门沙顶部最大平衡水深为6.91 m,与长期实测的自然水深相一致,显示了水力几何形态关系的合理性.引入主槽流量比例概念,进一步修正水力几何形态关系,使之适合于丁坝作用河段.据此计算得到在一、二和三期治理工程后北槽的最大平衡水深分别为8.40、8.91和9.92 m,为制定长江口治理方略提供了理论依据.

Abstract:

 For the purpose of revealing the mechanism of morphological evolution in the branching estuary which is a prominent type of tidal estuaries and reducing siltation in the Yangtze Estuary deepwater channel, a new relation for the hydraulic geometry of branching estuary was developed by solving the 2D continuity equation in integral form, 2D resistance equation, dimensionless width-depth ratio relation and time-dependent sediment transport capacity formula. The ratio of mean depths of a distributary channel and the main stream is a power function of its bifurcation ratio with an exponent of 2/7. The maximum equilibrium depth at the top of mouth bar in the Yangtze Estuary was calculated as 6.91 m by the proposed hydraulic geometry relation. The result agrees well with the depth acquired from long-term measurement data, which proves the reasonability of the new relation. Furthermore, the hydraulic geometry relation was modified to consider the effect of the groins built in the North Passage by introducing the concept of main channel discharge proportion. The maximum equilibrium depth of the North Passage after the three stages of deepwater channel regulation project was hereby calculated as 8.40, 8.91 and 9.92 m. This lays a theoretical foundation for developing strategies to regulate the Yangtze estuary.

出版日期: 2014-12-01
:  TV 14  
基金资助:

教育部博士点基金资助项目(20120101110108);国家自然科学基金资助项目(40776007)

通讯作者: 许丹,女,助理研究员     E-mail: darrenxu@zju.edu.cn
作者简介: 孙志林(1956—),男,教授,主要从事水沙动力学与河口海岸数值模拟研究. E-mail: oceansun@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孙志林, 杨仲韬, 高运, 许丹, 胡世祥. 长江分汊河口水力几何形态[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.12.023.

SUN Zhi-lin, YANG Zhong-tao, GAO Yun, XU Dan, HU Shi-xiang. Hydraulic geometry of branching channels in Yangtze estuary. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.12.023.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.12.023        http://www.zjujournals.com/eng/CN/Y2014/V48/I12/2266

[1] 孙志林,金元欢.分汊河口的形成机理[J].水科学进展,1996, 7(2): 144-150.
SUN Zhi-lin, JIN Yuan-huan. Mechanism of formation of an anabranched estuary [J]. Advances in Water Science, 1996, 7(2): 144-150.
[2] 金镠,虞志英,何青. 深水航道的河势控制和航道回淤问题[J]. 中国港湾建设, 2012(01): 18.
JIN Liu, YU Zhi-ying, HE Qing. Study on river regime control and siltiation in deepwater channel. [J]. China Harbor Engineering, 2012(01): 18.
[3] 刘杰.长江口深水航道河床演变与航道回淤研究[D].上海:华东师范大学,2010.
LIU Jie. Study on morphological evolution and si1tation in deep waterway due to channel re-construction in the North Passage, Yangtze estuary[D].Shanghai: East China Normal University, 2010.
[4] 严以新,高进,宋志尧,等. 长江口九段沙分流计算模式及工程应用[J]. 水利学报,2001,04: 79-84.
YAN Yi-xin, GAO Jin, SONG Zhi-yao, et al. Calculation method for stream passing around the Jiuduan sandbank in the river mouth of Yangtze River. [J]. Journal of Hydraulic Engineering, 2001(04): 79-84.
[5] 窦国仁. 平原冲积河流及潮汐河口的河床形态[J]. 水利学报,1964(02): 113.
DOU Guo-ren. Riverbed form of plain alluvial river and tidal estuary [J]. Journal of Hydraulic Engineering, 1964(02): 113.
[6] SASSI M G, HOITINK A J F, de BRYE B, et al. Downstream hydraulic geometry of a tidally influenced river delta[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F4).
[7] NIELD J M, WALKER D J, LAMBERT M F. Two-dimensional equilibrium morphological modelling of a tidal inlet: an entropy based approach[J]. Ocean Dynamics, 2005, 55: 549-558.
[8] 孙志林,夏珊珊,朱晓,等.河口时变水流挟沙能力公式[J].清华大学学报:自然科学版,2010,50(3):383-386.
SUN Zhi-lin, XIA Shan-shan, ZHU Xiao, et al. Formula of time-dependent sediment transport capacity in estuaries\[J\]. Journal of Tsinghua University: Science and Technology, 2010, 50(03): 383386.
[9] 谢鉴衡. 河床演变及整治[M].2版.北京:中国水利水电出版社,1996: 26-27.

[1] 匡翠萍, 宋竑霖, 顾杰, 马震. 黄骅港风生流及紊动的三维特性[J]. 浙江大学学报(工学版), 2017, 51(1): 38-45.
[2] 郭聪,孙志林,郑浩磊,潘桂娥. 河口冲淤对围垦的响应[J]. 浙江大学学报(工学版), 2016, 50(9): 1791-1797.
[3] 张晓雷, 夏军强, 邓珊珊, 王增辉. 断面间距对黄河下游高含沙洪水模拟结果影响[J]. 浙江大学学报(工学版), 2016, 50(4): 735-743.
[4] 张文君,孙红月,潘攀,魏振磊. 泥石流虹吸排水分流池自清淤能力分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2159-2164.
[5] 胡德超, 池龙哲, 杨琼, 王敏. 水库坝区冲刷漏斗的形成机理[J]. 浙江大学学报(工学版), 2015, 49(2): 257-264.
[6] 孙志林, 倪晓静, 许丹, 聂会. 河口泥沙数学模型的若干问题[J]. 浙江大学学报(工学版), 2015, 49(2): 232-237.
[7] 夏军强, 宗全利, 邓珊珊, 许全喜, 张翼. 三峡工程运用后荆江河段平滩河槽形态调整特点[J]. 浙江大学学报(工学版), 2015, 49(2): 238-245.
[8] 范念念, 吴保生. 基于随机-动力学模型的非均匀推移质扩散[J]. 浙江大学学报(工学版), 2015, 49(2): 246-250.
[9] 周建银, 邵学军, 江磊, 假冬冬. 水库细颗粒淤积物的重力驱动流动[J]. 浙江大学学报(工学版), 2014, 48(12): 2254-2258.
[10] 陈一帆, 程伟平, 蒋建群. 一种稳健的河流糙率反演方法[J]. J4, 2013, 47(8): 1361-1365.
[11] 张世瑕,王紫雯,吴赛男. 沿海围垦对防灾功能影响的景观生态机理研究
——以钱塘江河口海湾为例
[J]. J4, 2012, 46(7): 1281-1288.
[12] 李佳,姚炎明,孙志林,黄赛花,杨晓东. 大型海洋倾倒区悬浮物迁移扩散的数值模拟[J]. J4, 2011, 45(7): 1319-1328.
[13] 许丹, 孙志林. 钱塘江河口突发污染物扩散数值模拟分析[J]. J4, 2010, 44(9): 1767-1772.