Please wait a minute...
浙江大学学报(工学版)
一般工业技术     
多胞缓冲材料本构模型与应用进展
卢富德1,2,刘雄建2,高德1
1.浙江大学 宁波理工学院,浙江 宁波315100; 2.浙江省零件轧制成形技术研究重点实验室,浙江 宁波315100
Review of constitutive model and its application of cellular cushioning material
LU Fu-de1,2 , LIU Xiong-jian2, GAO De1
1.Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,China;2. Zhejiang Provincial Key Laboratory of Part Rolling Technology,Ningbo 315100,China
 全文: PDF(1103 KB)   HTML
摘要:

为了科学地设计汽车、航空、头盔及运输包装缓冲结构,以得到最优的结果,针对常用的泡沫、蜂窝及复合结构等,介绍各种缓冲结构的压缩性能表征、本构方程与工程运用的研究现状.针对泡沫结构的压缩性能,介绍泡沫结构的试验压缩响应与数值模拟方面的研究进展.结果表明:相对密度、环境温度、压缩应变率及微观结构等参数对泡沫的缓冲性能影响显著.相对密度越大,泡沫结构的屈服应力越大,吸收能量的能力越大;泡沫的吸收能量能力一般随环境温度的增加而减小;由于泡沫的基体材料表现率相关性,应变率增加导致吸收能量能力的增加;当微观结构不同时,泡沫的细胞分布导致结构的缓冲性能差异显著.针对蜂窝结构,介绍蜂窝结构的有限元模拟方面研究进展.介绍了填充管吸收能量结构和层状缓冲系统的工程运用以及所涉及到的一些优化方法.

Abstract:

The cushioning properties, the constitutive relationship and engineering application of cushioning structures were introduced in detail in order to reasonably design the cushioning structure for automobile, aerospace, helmet and transport packaging industries with the optimization results.  The development of experimental compressive response and numerical simulation on the foam structure was presented. The results in literature show the effect of relative density, environment temperature, compressive strain rate and microstructure on the compressive strength and energy absorbing capabilities are notable. The yield stress and energy capacity increase with increasing relative density and compressive strain rate, but decrease with increasing environment temperature. The microstructure of the cell in the foam structure has impact on the compressive response of the foam structure. The deformation mode and energy absorbing capacity of honeycomb structures were described mainly by the finite element modeling. Engineering applications of metal tube with filler and series cushioning structure were introduced, and some optimization methodologies were presented in practical engineering application.

出版日期: 2014-08-04
:  TB 485  
基金资助:

国家“十二五”科技支撑计划资助项目 (2011BAD24B01)

通讯作者: 高德,男,教授     E-mail: gaode@163.com
作者简介: 卢富德(1982-), 男,博士生,从事缓冲材料力学模型的研究. E-mail:lu673153@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

卢富德,刘雄建,高德. 多胞缓冲材料本构模型与应用进展[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.027.

LU Fu-de, LIU Xiong-jian, GAO De. Review of constitutive model and its application of cellular cushioning material. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.027.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.027        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1336

[1] LIU Q L, SUBHASH G, GAO X L. A parametric study on crushability of open-cell structural polymeric foams [J]. Journal of Porous Materials, 2005, 12(3): 233-248.
[2] CHEN C, LU T J, FLECK N A. Effect of inclusions and holes on the stiffness and strength of honeycombs [J]. International Journal of Mechanical Sciences, 2001, 43(2): 487-504.
[3] OZTURK U E, ANLAS G. Hydrostatic compression of anisotropic low density polymeric foams under multiple loadings and unloading [J]. Polymer Testing, 2011, 30(7): 737-742.
[4] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 2001: 30-60.
[5] FABRICE S, LAURENT C, JEAN-YVES C, et al. Mechanical properties of high density polyurethane foams: I. effect of the density [J]. Composite Science and Technology, 2006, 66(15): 2700-2708.
[6] THOMAS T, MAHMUZ H, CARLSSON L A, et al. Dynamic compression of cellular cores: temperature and strain rate effects [J]. Composite Structures, 2002, 58(4): 505-512.
[7] MAHFUZ H, THOMAS T, RANGARI V, et al. On the dynamic response of sandwich composites and their core materials [J]. Composites Science and Technology, 2006, 66(14): 2465-2472.
[8] GRACE I, PILIPCHUK V, IBRAHIM R, et al. Temperature effect on non-stationary compressive loading response of polymethacrylimide solid foam [J]. Composite Structures, 2012, 94(10): 3052-3063.
[9]CHEN W, LU F, WINFREE N. High-strain-rate compressive behavior of a rigid polyurethane foam with various densities [J]. Experimental Mechanics, 2002, 42(1): 65-73.
[10] SONG B, CHEN W W, DOU S, et al. Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam [J]. International Journal of Impact Engineering, 2005, 31(5): 509-521.
[11] SAHA M C, MAHFUZ H, CHAKRAVARTY U K, et al. Effect of density, microstructure, and strain rate on compression behavior of polymeric foams [J]. Materials Science and Engineering A, 2005, 406 (1/2): 328-336.
[12]VIOT P, BEANI F, LATAILLADE L J. Polymeric foam behavior under dynamic compressive loading [J]. Journal of Materials Science, 2005, 40(22): 5829-5837.
[13] ZHANG J, LIN Z, WANG A, et al. Constitutive modeling and material characterization of polymeric foams[J]. Journal of Engineering Materials and Technology,1997,119(3):284-291.
[14] DI L L, SALA G, OLIVIERI D. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets [J]. Polymer Testing, 2002, 21(2): 217-228.
[15] SWETHA C, KUMAR R. Quasi-static uniaxial compression behaviour of hollow glass microspheres/epoxy based syntactic foams [J]. Materials and Design, 2011, 32(8/9): 4152-4163.
[16] LORENZO P, MARTINA S, MASSIMILIANO A. Dynamic mechanical behavior of syntactic iron foams with glass microspheres [J]. Materials Science and Engineering A, 2012, 552(1): 364-375.
[17] MONTANINI R. Measurement of strain rate sensitivity of aluminium foams for energy dissipation [J]. Journal of Mechanical Sciences, 2005, 47(1): 26-42.
[18] CADY C M, GRAY G T, LIU C, et al. Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature [J]. Materials Science Engineering A, 2009, 525(1/2): 16.
[19] HALL I W, GUDEN M, YU C J. Crushing of aluminum closed cell foams: density and strain rate effects [J]. Scripta Materialia, 2000, 43(6): 515-521.
[20]VIOT P. Hydrostatic compression on polypropylene foam [J]. International Journal of Impact Engineering, 2009, 36 (7): 975-989.
[21] MOREU Y M, MILLS N J. Rapid hydrostatic compression of low-density polymeric foams [J]. Polymer Testing, 2004, 23(3): 313-322.
[22] SRIVASTAVA V, SRIVASTAVA R. On the polymeric foams: modeling and properties [J]. Journal of Material Science, 2014, 49(7): 2681-2692.
[23] KIM Y, KANG S. Development of experimental method to characterize pressure-dependent yield criteria for polymeric foams [J]. Polymer Testing, 2003, 22(2): 197-202.
[24]LI B, GU Y D, EHGLISH R, et al. Characterization of nonlinear material parameters of foams based on indentation tests [J]. Materials and Design, 2009, 30(7): 2708-2714.
[25] ABRAMOWICZ W, JONES N. Dynamic progressive buckling of circular and square tubes [J]. International Journal of Impact Engineering, 1986, 4(4): 243-270.
[26]GIGLIO M, MANES A, GILIOLI A. Investigations on sandwich core properties through an experimental-numerical approach [J]. Composites Part B, 2012, 43(2): 361-374.
[27] HU L, YOU F F, YU T X. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs [J]. Materials and Design, 2013, 46: 511-523.
[28] XU S Q, BEYNON J H, RUAN D, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs [J]. Composite Structures, 2012, 94( 8): 2326-2336.
[29]RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs: a finite element study [J]. International Journal of Impact Engineering, 2003, 28(2): 161-182.
[30]WANG A J, MCDOWELL D L. In-plane stiffness and yield strength of periodic metal honeycombs [J]. Journal of Engineering Materials and Technology, 2004, 126(2): 137-156.
[31]LIU Q, SUBHASH G. A phenomenological constitutive model for foams under large deformation [J]. Polymer Engineering and Science, 2004, 44 (5): 463-473.
[32] LIU Q, TOOLE B O. Behavior pattern and parametric characterization for low density crushable foams [J]. Journal of Materials Processing Technology, 2007, 191(1/2/3): 73-76.
[33] AVALLE M, BELINGARDI G, IBBA A. Mechanical models of cellular solids: parameters identification from experimental tests [J]. International Journal of Impact Engineering, 2007, 34(1): 327.
[34] SHERWOOD J A, FROST C C. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading [J]. Polymer Engineering and Science, 1992, 32(16): 1138-1146.
[35] ZHANG J, KIKUCHI N, LI V, et al. Constitutive modeling of polymeric foam material subjected to dynamic crash loading [J]. International Journal of Impact Engineering, 1998, 21(5): 369-386.
[36] JEBUR Q H, HARRISON P, GUO Z Y, et al. Characterization and modeling of a transversely isotropic melt-extruded low-density polyethylene closed cell foam under uniaxial compression [J]. Journal of Mechanical Engineering Science, 2012, 226(9): 2168-2177.
[37] MILLS N J, FITZGERALD C, GILCHRIST A, et al. Polymer foams for personal protection: cushions, shoes and helmets [J]. Composites Science and Technology, 2003, 63(16): 2389-2400.
[38] SHIM V P W, TU Z H, LIM C T. Two-dimensional response of crushable polyurethane foam to low velocity impact [J]. International Journal of Impact Engineering, 2000, 24(6/7): 703-731.
[39] UMUD E O, GUNAY A. Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading [J]. Materials and Design, 2011, 32(2): 773-780.
[40] BROTHERS A H, DUNAND D C. Mechanical properties of a density-graded replicated aluminum foam [J]. Materials Science and Engineering A, 2008, 489 (1/2): 439-443.
[41] DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253-1283.
[42] HANSSEN A G, HOPPERSTAD O S, LANGSETH M, et al. Validation of constitutive models applicable to aluminium foam [J]. International Journal of Mechanical Sciences, 2002, 44(2): 359-406.
[43]MEGUID S A, STRANART J C, HEYERMAN J. On the layered micromechanical three-dimensional finite element modeling of foam-filled columns [J]. Finite Elements Analysis and Design, 2004, 40(9/10): 1035-1057.
[44] REYES A, HOPPERSTAD O S, BERSTAD T, et al. Constitutive modeling of aluminum foam including fracture and statistical variation of density [J]. European Journal of Mechanics Solids, 2003, 22(6): 815-835.
[45] GONG L, KYRIAKIDES S, TRIANTAFYLLIDIS N. On the stability of Kelvin cell foams under compressive loads [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(4): 771-794.
[46]MILLS N J. Modeling the dynamic crushing of closed-cell polyethylene and polystyrene foams [J]. Journal of Cellular Plastics, 2011, 47(2): 173-197.
[47] ALVAREZ P, MENDIZABAL A, PETITE M M. Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams [J]. Material Wissenschaft und Werkstofftechnik, 2009, 40(3): 126-132.
[48] NAMMI S K, MYLER P, EDWARDS G. Finite element analysis of closed-cell aluminium foam under quasi-static loading [J]. Materials and Design, 2010, 31(2): 712-722.
[49] SULLIVAN R M, GHOSN L J, LERCH B A. A general tetrakaidecahedron model for open-celled foams [J]. International Journal of Solids and Structures, 2008, 45(6): 1754-1765.
[50] SONG Y Z, WANG Z H, ZHAO L M. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model [J]. Materials and Design, 2010, 31(9): 4281-4289.
[51] ATTIA M S, MEGUID S A, TAN K T, et al. Influence of cellular imperfections on mechanical response of metallic foams [J]. International Journal of Crashworthiness, 2010,15(4): 357-367.
[52] 卢富德,高德. 考虑蜂窝纸板箱缓冲作用的产品包装系统跌落冲击研究[J].振动工程学报,2012, 25(3): 335-341.
LU Fu-de, GAO De. Study on drop impact of packaging system considering the cushioning action of honeycomb paperboard box [J]. Journal of Vibration Engineering, 2012, 25(3): 335-341.
[53] 卢富德, 高德. C楞瓦楞纸板动态缓冲模型及应用[J]. 功能材料, 2012, 43(1): 39-41.
LU Fu-de, GAO De. Cushion model and its application of C-flute corrugated paperboard [J]. Journal of Functional Materials, 2012, 43(1): 39-41.
[54] ZHAO H, GARY G. Crushing behaviour of aluminium honeycombs under impact loading [J]. International Journal of Impact Engineering, 1998, 21(10): 827-836.
[55]张绍云,储火,卢富德,等.蜂窝-泡沫缓冲系统动力学有限元分析[J].振动与冲击,2014,33(2):5254.
ZHANG Shao-yun, CHU Huo, LU Fu-de, et al. Finite element analysis for dynamic response of cushioning system made out of honeycomb paperboard and foam [J]. Journal of Vibration and Shock, 2014, 33(2): 52-54.
[56] HANSSEN A G, HOPPERSTAD O S, LANGSETH M. Design of aluminium foam-filled crash boxes of square and circular cross-sections [J]. International Journal of Crashworthiness, 2001, 6(2): 177-188.
[57] HANSSEN A G,STOBENER K, RAUSCH G, et al. Optimization of energy absorption of an A-pillar by metal foam insert [J]. International Journal of Crashworthiness, 2006, 11(3): 231-241.
[58] KIM H S, CHEN W, WIERZBICKI T. Weight and crash optimization of foam-filled three-dimensional "S" frame [J]. Computational Mechanics, 2002, 28(5): 417-424.
[59] ZAREI H R, KROEGER M. Crashworthiness optimization of empty and filled aluminum crash boxes [J]. International Journal of Crashworthiness, 2007, 12(3): 255-264.
[60] ZAREI H R, KROEGER M. Multiobjective crashworthiness optimization of circular aluminum tubes [J]. Thin-Walled Structures, 2006, 44(3): 301-308.
[61] ZAREI H R, KROEGER M. Optimization of the foam-filled aluminum tubes for crush box application [J]. Thin-Walled Structures, 2008, 46(2): 214-221.
[62] HOU S J, LI Q, LONG S Y, et al. Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria [J]. Finite Elements in Analysis and Design, 2007, 43(6/7): 555-565.
[63] NARIMAN-ZADEH N, DARVIZEH A, JAMALI A. Pareto optimization of energy absorption of square aluminium columns using multi-objective genetic algorithms [J]. Journal of Engineering Manufacture, 2006, 220(2): 213-224.
[64]CHEN W G. Optimisation for minimum weight of foam-filled tubes under large twisting rotation [J]. International Journal of Crashworthiness, 2001, 6(2): 223-241.
[65] SUN G Y, LI G, HOU S J. Crashworthiness design for functionally graded foam-filled thin-walled structures [J]. Materials Science and Engineering A, 2010, 527(7/8): 1911-1919.
[66] ZHANG Y, SUN G, LI G, et al. Optimization of foam-flled bitubal structures for crashworthiness criteria [J]. Material and Design, 2012, 38(1): 99-109.
[67]YANG S, CHANG Q. Multiobjective optimization for empty and foam-filled square columns under oblique impact loading [J].International Journal of Impact Engineering, 2013, 54(1): 177-191.
[68] SANTOSA S, WIERZBICKI T. Crash behavior of box columns filled with aluminum honeycomb or foam [J]. Computers Structures,1998, 68(4): 343-367.
[69]ZARE H, KROEGER M. Optimum honeycomb filled crash absorber design [J]. Materials and Design, 2008, 29(1): 193-204.
[70] SUN G, LI G, STONE M, et al. A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials [J]. Computational Materials Science, 2010, 49(3): 500-511.
[71]YIN H F, WEN G L, HOU S J, et al. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes [J]. Materials and Design, 2011, 32(8/9): 4449-4460.
[72]NAGEL G M, THAMBIRATNAM D P. Computer simulation and energy absorption of tapered thin-walled rectangular tubes [J]. Thin-Walled Structures, 2005, 43(8): 1225-1242.
[73]QI C, YANG S, DONG F. Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading [J]. Thin-Walled Structures, 2012, 59(1): 103-119.
[74]TINARD V, DECK C, WILLINGER R. Modeling and validation of motorcyclist helmet with composite shell [J]. International Journal of Crashworthiness, 2012, 17(2): 209215.
[75] LONG B T, KWONG-MING L, HEOW- PUEH L, et al. Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: experiments and finite element simulations [J]. International Journal of Impact Engineering, 2012, 50(1): 99-112.
[76]GAETANO G D, LANNUCCI L, GALVANETTO U. Shock absorption performance of a motorbike helmet with honeycomb reinforced liner [J]. Composite Structures, 2011, 93(11): 2748-2759.
[77] COELHO R M, ALVES D, SOUSA R J, et al.New composite liners for energy absorption purposes [J]. Materials and Design, 2013, 43: 384-392.
[78] RUEDA M A F, CUI L, GILCHRIST M D. Optimization of energy absorbing liner for equestrian helmets. Part I: layered foam liner [J]. Materials and Design, 2009, 30(9): 3405-3413.
[79] CUI L, RUEDA M A F,GILCHRIST M D. Optimization of energy absorbing liner for equestrian helmets. Part II: functionally graded foam liner [J]. Materials and Design, 2009, 30(9): 3414-3419.
[80] ZHOU J, GUAN Z W, CANTWELL W J. The impact response of graded foam sandwich structures [J]. Composite Structures, 2013, 97(1): 370-377.
[81] HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels [J]. International Journal of Impact Engineering, 2006, 32(7): 1127-1144.
[82]SEK M, ROUILLARD V, TARASH H, et al. Enhancement of cushioning performance with paperboard crumple inserts [J]. Packaging Technology and Science, 2005, 18(5): 273-278.
[83] LU F D, TAO W M, GAO D. Virtual mass method for solution of dynamic response of composite cushion packaging system [J]. Packaging Technology and Science, 2013, 26(suppl.1): 32-42.
[84] 卢富德,陶伟明,高德. 串联缓冲系统冲击响应与结构优化分析 [J]. 浙江大学学报:工学版,2012,46(10): 1773-1777.
LU Fu-de, TAO Wei-ming, GAO De. Impact response of series cushioning system and structure optimization analysis [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(10): 1773-1777.
[85] 卢富德,陶伟明,高德. 串联缓冲结构压缩响应虚拟质量分析方法[J]. 浙江大学学报:工学版, 2012,46(8): 1431-1436.
LU Fu-de, TAO Wei-ming, GAO De. Compression responses of series cushioning structures by a virtual mass method [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(8): 14311436.2  

[1] 卢富德, 陶伟明, 高德. 串联缓冲系统冲击响应与结构优化分析[J]. J4, 2012, 46(10): 1773-1777.
[2] 卢富德, 陶伟明, 高德. 串联缓冲结构压缩响应虚拟质量分析[J]. J4, 2012, 46(8): 1431-1436.