Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
太阳能碟式二次反射系统的光路分析与比较
张艳梅,肖刚,骆仲泱,杨天锋,郭凯凯,倪明江
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Optical analysis and comparison of two-stage solar dish system
ZHANG Yan-mei, XIAO Gang, LUO Zhong-yang, YANG Tian-feng, GUO Kai-kai, NI Ming-jiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(514 KB)   HTML
摘要:

比较直径为1 000 mm、不同边缘角的碟式一次镜结合旋转椭圆面型、旋转双曲面型、平面型及旋转抛物面型二次镜的聚光效果.除旋转抛物面型二次反射系统,其他系统的焦点位于一次镜顶点,二次镜数值孔径为02.随着边缘角的增加,旋转椭圆面型二次反射系统接收板中心的能流密度先增大后减小,二次镜的相对位置降低,遮光率减小;旋转双曲面型二次反射系统的能流密度变化不大,二次镜的相对位置升高,遮光率减小;两者均适用于二次反射低焦系统.随着边缘角的增大,平面型二次反射系统的能流密度先增大后减小;二次镜的相对位置不变,遮光率增大,适用于二次反射高焦系统.旋转抛物面型二次反射系统的能流密度随着边缘角的增大而增大,二次镜的相对位置和遮光率不变,适用于低倍聚光系统.对于误差的容忍性,平面型二次反射系统最优;旋转双曲面型优于旋转椭圆面型二次反射系统.

Abstract:

Four types of secondary mirrors (SM) were compared, including an ellipsoidal, a hyperboloidal, a planar and a paraboloidal type. A primary dish with a diameter of 1 000 mm and a varying rim angle was employed in each system. The concentrated spots were on the vertexes of the dishes and the numerical aperture of the SM was 02 except for the paraboloidal system. As to the ellipsoidal system, flux density on the receiver increases when rim angle<90° and then decreases. The relative location and shading percentage of the SM decreases. As to the hyperboloidal system, when rim angle increases, flux density varies little. The relative location of the SM increases and shading percentage decreases. Both the ellipsoidal and hyperboloidal systems are suitable to cases which need low concentrated spots. As to the planar system, flux density increases when rim angle<45° and then decreases. The relative location of the SM is invariable and shading percentage increases. A planar SM is suitable to a system which needs a high concentrated spot. As to the paraboloidal system, when rim angle increases, the flux density increases while the relative location and shading percentage of the SM are invariable. A paraboloidal SM is suitable for low concentration ratio system. The hyperboloidal system has better tolerance to errors than the ellipsoidal system while the tolerance of the planner system is the best.

出版日期: 2014-08-04
:  TK 513  
基金资助:

国家自然科学基金资助项目(51276167);浙江省重大科技专项计划资助项目(2012C01022-1)

通讯作者: 骆仲泱,男,教授     E-mail: zyluo@zju.edu.cn
作者简介: 张艳梅(1983-),女,博士生,从事太阳能热发电技术的研究.E-mail: zhangyanmei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张艳梅,肖刚,骆仲泱,杨天锋,郭凯凯,倪明江. 太阳能碟式二次反射系统的光路分析与比较[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.017.

ZHANG Yan-mei, XIAO Gang, LUO Zhong-yang, YANG Tian-feng, GUO Kai-kai, NI Ming-jiang. Optical analysis and comparison of two-stage solar dish system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.017.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.017        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1260

[1]RABL A. Tower reflector for solar power plant [J]. Solar Energy, 1976, 18(3): 269-271.
[2]MAUK C E, PRENGLE J R H W, SUN E C. Optical and thermal analysis of a cassegrainian solar concentrator [J]. Solar Energy, 1979, 23(2): 157-167.
[3]FEUERMANN D, GORDON J M. Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight [J]. Solar Energy, 1999, 65(3): 159-170.
[4]FEUERMANN D, GORDON J M. High-concentration photovoltaic designs based on miniature parabolic dishes [J]. Solar Energy, 2001, 70(5): 423-430.
[5]GORDON J M. Tailoring optical systems to optimized photobioreactors [J]. International Journal of Hydrogen Energy, 2002, 27(11): 1175-1184.
[6]FEUERMANN D, GORDON J M, HULEIHIL M. Solar fiber-optic mini-dish concentrators: first experimental results and field experience [J]. Solar Energy, 2002, 72(6): 459-472.
[7]GORDON J M, FEUERMANN D. Optical performance at the thermodynamic limit with tailored imaging designs [J]. Applied Optics, 2005, 44(12): 2327-2331.
[8]CHEN C F, LIN C H, JAN H T, et al. Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method [J]. Optics Communications, 2009, 282(3): 360-366.
[9]JIANG S L, HU P, MO S P, et al. Modeling for two-stage dish concentrating spectral beam splitting photovoltaic/thermal system [C]∥Proceedings of Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009).Wuhan: IEEE, 2009.
[10] JIANG S L, HU P, MO S P, et al. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/ thermal system using spectral beam splitting technology [J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1686-1696.
[11]KRIBUS A, ZAIBEL R, SEGAL A. Extension of the hermite expansion method for cassegrainian solar central receiver systems [J]. Solar Energy, 1998, 63(6): 337-343.
[12]KARABULUT H, YUCESU H S, CINAR C, et al. Construction and testing of a dish/stirling solar energy unit [J]. Journal of the Energy Institute, 2009, 82(4): 228-232.
[13] SCHLEGEL G O, BURKHOLDER F W, KLEIN S A, et al. Analysis of a full spectrum hybrid lighting system [J]. Solar Energy, 2004, 76(4): 359-368.
[14] 林海浩. 聚光光伏发电光学系统优化设计研究 [D]. 杭州: 浙江工业大学, 2009.
LIN Hai-hao. The optimum design and study of the concentrating photovoltaic optical system [D]. Hangzhou: Zhejiang University of Technology, 2009.
[15]KALOGIROU S. Parabolic trough collector system for low temperature steam generation: design and performance characteristics [J]. Applied Energy, 1996, 55(1): 119.
[16] SCHLEGEL G O, BURKHOLDER F W, KLEIN S A, et al. Analysis of a full spectrum hybrid lighting system [J]. Solar Energy, 2004, 76(4): 359-368.
[17] 林海浩. 聚光光伏发电光学系统优化设计研究 [D]. 杭州: 浙江工业大学, 2009.
LIN Hai-hao. The optimum design and study of the concentrating photovoltaic optical system [D]. Hangzhou: Zhejiang University of Technology, 2009.
[18] KALOGIROU S. Parabolic trough collector system for low temperature steam generation: design and performance characteristics [J]. Applied Energy, 1996, 55(1): 119.

[1] 陈欢,王红梅,俞自涛,胡亚才,张良,倪煜,樊建人. 自然循环槽式太阳能中高温集热系统实验研究[J]. J4, 2012, 46(9): 1666-1670.