Please wait a minute...
浙江大学学报(工学版)
土木工程     
土体自重对宁波软土非线性大应变固结的影响
谢新宇1,2,3,黄杰卿1,2,3,王文军2,李金柱1,2
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058; 2. 浙江大学宁波理工学院 土木建筑工程学院,
浙江 宁波 315100; 3. 浙江大学 软弱土与环境土工教育部重点实验室, 浙江 杭州 310058
Influence of weight of soils on nonlinear finite strain consolidation for Ningbo soft clay
XIE Xin-yu1,2,3, HUANG Jie-qing1,2,3, WANG Wen-jun2, LI Jin-zhu1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058,Chian;
2. School of Civil Engineering & Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100,China;
3. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058,Chian
 全文: PDF(954 KB)   HTML
摘要:

采用3种不同的自重考虑方法,对宁波软土的固结性状进行研究.基于Gibson大应变固结方程,考虑软土的压缩非线性和渗流非线性,推导3种方法的控制方程.基于宁波软土的试验结果,采用有限元法求解控制方程.计算结果表明,准确考虑土体自重和简化考虑土体自重的计算结果比较接近,而忽略土体自重的算法低估了超静孔压的消散速率.在固结中期,土体自重对超静孔压消散的影响非常明显,外荷载或土层厚度越大,该影响越显著.在大应变固结分析中,大多数情况下可以简化考虑土体自重,但不能完全忽视土体自重的影响.

Abstract:

Research on the consolidation behavior for Ningbo soft clay was carried out under different considerations for the weight of soils. On the basis of finite strain consolidation equation derived by considering, the governing equations for numerical analysis were derived by taking the nonlinear compressibility and nonlinear permeability of soils into consideration. Based on the experimental data, the governing equations were solved with the finite element method. It can be found that the calculation results considering the weight of soils simply are very close to the ones considering the weight of soils accurately. However, the dissipation rate of excess pore water pressure is underestimated without considering the weight of soils. Influence of the weight of soils on the dissipation rate of excess pore water pressure is quite obvious in the intermediate stage of consolidation. In this stage, the greater the external load or the thickness of soils is, the greater the influence of the weight of soils is. In finite strain consolidation analysis, the weight of soils can be considered simply but it can not be completely ignored in most cases.

出版日期: 2014-11-26
:  TU 447  
基金资助:

国家自然科学基金资助项目(51378469);浙江省自然科学基金资助项目(Y1111240);宁波市自然科学基金资助项目(2013A610196) .

通讯作者: 李金柱,男,博士后.     E-mail: jinzhu_lee@163.com
作者简介: 谢新宇(1969-),男,教授,博导,主要从事软黏土力学及地基处理研究.E-mail:xiexinyu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

谢新宇,黄杰卿,王文军,李金柱. 土体自重对宁波软土非线性大应变固结的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.05.011.

XIE Xin-yu, HUANG Jie-qing, WANG Wen-jun, LI Jin-zhu. Influence of weight of soils on nonlinear finite strain consolidation for Ningbo soft clay. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.05.011.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.05.011        http://www.zjujournals.com/eng/CN/Y2014/V48/I5/827

[1]GIBSON R E, ENGLAND G L, HUSSEY M J L. The theory of one dimensional consolidation of saturated clays, I Finite non-linear consolidation of thin homogeneous layers [J]. Geotechnique, 1967(17):261273.
[2]POSKITT T J. Consolidation of saturated clay with variable permeability and compressibility [J]. Geotechnique, 1969, 19(2): 234252.
[3]CARTER J P, SMALL J C, BOOKER J R. A theory of finite elastic consolidation [J]. Int. Journal of Solids Structures, 1977, 13:467478.
[4] GIBSON R E, SCHIFFMAN R L, CARGILL K W. The theory of one dimensional consolidation of saturated clays , II. Finite non- linear consolidation of thick homogeneous layers [J]. Canadian Geotechnical Journal, 1981, 18(2): 280293.
[5]谢新宇. 一维大变形固结理论的研究 [D]. 杭州: 浙江 大学, 1996.
XIE Xin-yu. On the 1-D large strain deformation consolidation theories [D]. Hangzhou: Zhejiang University, 1996.
[6] XIE K H, LEO C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays [J]. Computers and Geotechnics, 2004, 31:301314.
[7] CAI Y Q, GENG X Y, XU C J. Solution of one-dimensional finite-strain consolidation of soil with variable compressibility under cyclic loadings [J]. Computers and Geotechnics, 2007, 34: 3140.
[8] 张继发. 一维大应变固结问题的解析理论研究 [D]. 杭州: 浙江大学, 2002.
ZHANG Ji-fa. Studies on the analytical theory of one dimensional large strain consolidation problem [D]. Hangzhou: Zhejiang University, 2002.
[9] 李冰河,谢康和,应宏伟,等. 软黏土非线性一维大应变固结分析 [J]. 岩土工程学报, 2000, 22(3): 368370.
LI Bing-he, XIE Kang-he, YING Hong-wei, et al. Analysis of one dimensional nonlinear large-strain consolidation of soft clay [J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 368370.
[10]李冰河,应宏伟,谢康和,等. 考虑土体自重的一维大应变固结分析 [J]. 土木工程学报, 2000, 33(3): 5459.
LI Bing-he, YING Hong-wei, XIE Kang-he, et al. Analysis of 1-D large-strain consolidation considering the self-weight of soils [J]. China Civil Engineering Journal, 2000, 33(3): 5459.
[11] 吴健,谢新宇,朱向荣. 饱和土体一维复杂非线性固结特性研究 [J]. 岩土力学, 2010, 31(1): 8186.
WU Jian, XIE Xin-yu, ZHU Xiang-rong. Study of properties of 1-D complex nonlinear consolidation of saturated soils [J]. Rock and Soil Mechanics, 2010, 31(1): 8186.
[12] MESRI G, ROKHSAR A. Theory of consolidation for clays [J]. Journal of Geotechnical Engineering, ASCE, 1974, 100(GT4): 889904.
[13] TAVENAS F, JEAN P, LEBLOND P, et al. The permeability of natural soft clays. part Ⅱ: permeability characteristics [J]. Canadian Geotechnical Journal, 1983, 20(4): 645660.
[14] 谢康和,齐添,胡安峰,等. 基于GDS的黏土非线性渗透特性试验研究 [J]. 岩土力学, 2008, 29(2): 420424.
XIE Kang-he, QI Tian, HU An-feng, et al.Experimental study on nonlinear permeability characteristics of Xiaoshan clay [J]. Rock and Soil Mechanics, 2008, 29(2): 420424.
[15] 庄迎春,刘世明,谢康和. 萧山软黏土一维固结系数非线性研究 [J]. 岩石力学与工程学报, 2005, 24(24): 45654569.
ZHUANG Yin-chun, LIU Shi-ming, XIE Kang-he. Study on nonlinearity of one-dimensional consolidation coefficient of Xiaoshan clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 45654569.
[16] 王结虎. 上海软土渗透性的试验研究 [D]. 上海: 同济大学, 2004.
WANG Jie-hu. Permeability test on Shanghai soft soil [D]. Shanghai: Tongji University, 2004.
[17] 纠永志,刘忠玉,乐金朝,等. 考虑非Darcy渗流和自重应力的一维固结分析 [J]. 同济大学学报:自然科学版, 2012, 40(4), 541548.
JIU Yong-zhi, LIU Zhong-yu, YUE Jin-chao, et al. One-dimensional consolidation with a consideration of non-Darcy flow and self-gravity stress [J]. Journal of Tongji University∶Natural Science, 2012, 40(4), 541548.
[18] 李冰河. 成层饱和软黏土地基大应变固结理论研究[D]. 杭州: 浙江大学, 1999.
LI Bing-he. Studies on the large strain consolidation of saturated and layered soft clayey soils [D]. Hangzhou: Zhejiang University, 1999.
[19] 刘育民. 一维大应变固结性状的若干研究[D]. 杭州: 浙江大学, 2004.
Liu Yu-min. Some studies on the behavior of one dimensional large strain consolidation[D]. Hangzhou: Zhejiang University, 2004.
[20] 郑辉. 软黏土地基大应变非线性流变固结理论研究[D]. 杭州: 浙江大学, 2004.
ZHENG Hui. On the theory of large strain and non-linear rheological consolidation of soft clayey soils [D]. Hangzhou: Zhejiang University, 2004.

[1] 谭勇, 康志军, 卫彬, 邓刚. 上海软土地区某地铁风井深基坑案例分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1048-1055.
[2] 鲍树峰,董志良,娄炎,莫海鸿,陈平山,周红星,罗彦. 高黏粒含量新近吹填淤泥加固新技术室内研发Ⅱ[J]. 浙江大学学报(工学版), 2015, 49(9): 1707-1715.
[3] 王驰, 徐永福, 叶冠林. 砼芯水泥土搅拌桩复合地基工作特性分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1610-1617.
[4] 张仪萍, 李剑.  真空预压排水机制室内模型试验研究[J]. 浙江大学学报(工学版), 2014, 48(4): 679-685.