Please wait a minute...
J4  2014, Vol. 48 Issue (3): 548-554    DOI: 10.3785/j.issn.1008-973X.2014.03.025
航空、航天     
基于导轨结构的新型笼式皮卫星分离机构
吴昌聚,徐秀琴
浙江大学 航空航天学院,浙江 杭州 310027
New cage style pico-satellite deployer based on sliding guide structure
WU Chang-ju, XU Xiu-qin
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2314 KB)   HTML
摘要:

针对国际上现有皮卫星分离机构存在的不足,提出采用切割器解锁、弹簧驱动、导轨限位、凸轮控制星体开始运动的时刻、锁紧轴锁紧和自带供电系统的“笼式”新型分离机构.这种结构大大降低了对星体的设计约束,避免了星体和舱门之间的碰撞和刮擦,降低了对火箭的依赖,大大提高了搭载的可能性.从分离机构的设计、分离过程理论计算以及试验验证等方面对分离机构进行了研究.仿真分析及试验结果表明:该设计能够完全满足分离机构质量、分离速度、轴向和横向过载、基频的要求,为后续分离机构的进一步研制提供了参考.

Abstract:

In view of the drawbacks of the currently used pico-satellite deployers, a new cage style deployer was put forward, which is characteristic of cutter unlocking the door, conical spring driving the pico-satellite, oriented rail restricting the direction, cam controlling the start movement of pico-satellite, locking shaft fixing the door and having power supply system itself. This structure greatly reduces the constraint on the pico-satellite design, and avoids the collision or scratch between the pico-satellite and the deployer door. The design also reduces the dependence on the rocket and greatly increases its compatibility with the rocket. In this work, the deployer research includes designing, theoretical calculation of the deploying process and experimental verification. The results of calculation and experiment show that the design can meet the requirements fully, including the mass of the deployer, deploying velocity, overload of the axial direction and the transverse direction and basic frequency. This can be regarded as reference for the further development.

出版日期: 2018-06-10
:  V 416  
基金资助:

中央高校基本科研业务费专项资金资助项目(2013QNA4044).

作者简介: 吴昌聚(1977-),男,副教授,主要从事微小卫星结构、热控等方面的研究. E-mail: wuchangju@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴昌聚,徐秀琴. 基于导轨结构的新型笼式皮卫星分离机构[J]. J4, 2014, 48(3): 548-554.

WU Chang-ju, XU Xiu-qin. New cage style pico-satellite deployer based on sliding guide structure. J4, 2014, 48(3): 548-554.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.03.025        http://www.zjujournals.com/eng/CN/Y2014/V48/I3/548

[1] SCHOLZ A, LEY W, DACHWALD B, et al. Flight results of the COMPASS-1 picosatellite mission [J]. Acta Astronautica, 2010, 67: 1289-1298.
[2] LABERTEAUX J, MOESTA J, BERNARD B, Advanced picosatellite experiment [J]. Aerospace and Electronic Systems Magazine, 2009, 24(9): 4-9.
[3] KOTOKU J, KATAOKA J, KURAMOTO Y, et al. Pre-flight performance and radiation hardness of the Tokyo Tech pico-satellite Cute-1.7 [J]. Nuclear Instruments and Methods in Physics Research A, 2006, 565(2): 677-685.
[4] HIROKI A, KOTA F, SHINICHI I, et al. Design of Tokyo Tech nano-satellite Cute-1.7+APD II and its operation [J]. Acta Astronautica, 2010, 66: 1412-1424.
[5] KATAOKA J, TOIZUMI T, NAKAMORI T, In-orbit performance of avalanche photodiode as radiation detector on board the picosatellite Cute-1.7+APD II [J]. Journal of Geophysical Research-Space Physics, 2010, 115: A05204/1- A05204/9.
[6] SHINICHI N, NOBUTADA S, HIRONORI S, et al. Evolution from education to practical use in University of Tokyos nano-satellite activities [J]. Acta Astronautica, 2010, 66: 1099-1105.
[7] HAMANN R J, VERHOEVEN C J M, Nano-satellites, a fast way to pre-qualify new micro-technology [C]∥ 2005 International Conference on MEMS, NANO and Smart Systems, (ICMENS 2005). Banff, Alberta, Canada:[s.n.], 2005: 263-264.
[8] KARAN S, STUART E, ERIC C, et al. Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite [J]. Acta Astronautica, 2006, 59: 236-245.
[9] CHANG Y K, PARK J H, KIM Y H, et al. Design and development of HAUSAT-1 picosatellite system [C]∥ Proceedings of 1st International Conference on Recent Advances in Space Technologies. Istanbul, Turkey:[s.n.],2003: 47-54.
[10] CHANG Y K, MOON B Y, HWANG K L, et al. Development of the HAUSAT-2 nanosatellite for low-cost technology demonstration [C]∥Proceedings of 2nd International Conference on Recent Advances in Space Technologies. Istanbul, Turkey:[s.n.],2005: 173-179.
[11] ISAAC N, JORDI P S, Development of a family of picosatellite deployers based on the CubeSat Standard [C]∥ Aerospace Conference Proceedings.[S.l.]: IEEE, 2002: 457-467.
[12] SIMON L, ARMEN T, NASH C, et al. Cal Poly Coordination of Multiple CubeSats on the DNEPR Launch Vehicle [C]∥ 18th Annual AIAA/USU Conference on Small Satellites. Logan, UT, USA:AIAA/USU, 2004: 1-11.
[13] ALEXANDER C, ROLAND C, LORI B, et al. Standardization promotes flexibility: a review of CubeSats Success [C]∥ AIAA/6th Responsive Space Conference, Los Angeles, California, USA:AIAA, 2008: 1-9.
[14] STUART E, KARAN S, STEPHEN M, et al. Adaptable, multi-mission design of CanX Nanosatellites [C]∥ 20th Annual AIAA/USU Conference on Small Satellites. Logan, UT, USA:AIAA/USU, 2006: 1-9.
[15] NATHAN G O, JESSE K E, BENOIT P L, et al. Precision formation flight: The CanX-4 and CanX-5 dual nanosatellite mission [C]∥ 21st Annual AIAA/USU Conference on Small Satellites. Logan, UT, USA:AIAA/USU, 2007: 1-10.

No related articles found!