[1] CZARNECKI O, GRIMM B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria [J]. Journal of Experimental Botany, 2012, 63(4Sl): 1675-1687.
[2] GUO X Q, LI Y S, YU X C. Promotive effects of 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence of tomato seedlings under suboptimal low temperature and suboptimal photon flux density stress - short communication [J]. Horticultural Science, 2012, 39(2): 97-99.
[3] YOUSSEF T, AWAD M A. Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer [J]. Journal of Plant Growth Regulation, 2008, 27(1): 1-9.
[4] AARTI P D, TANAKA R, TANAKA A. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons [J]. Physiologia Plantarum, 2006, 128(1): 186-197.
[5] AVERINA N G, GRITSKEVICH E R, VERSHILOVSKAYA I V, et al. Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid [J]. Russian Journal of Plant Physiology, 2010, 57(6): 792-798.
[6] VAVILIN D V, VERMAAS W. Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria [J]. Physiologia Plantarum, 2002, 115(1): 9-24.
[7] AKRAM N A, ASHRAF M, Al-QURAINY F. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes [J]. Scientia Horticulturae, 2012, 142: 143-148.
[8] ZHEN A, BIE Z L, HUANG Y, et al. Effects of 5-aminolevulinic acid on the H2O2-content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings [J]. Biologia Plantarum, 2012, 56(3): 566-570.
[9] HARA M, TAKAHASHI I, YAMORI M, et al. Effects of 5-aminolevulinic acid on growth and amylase activity in the radish taproot [J]. Plant Growth Regulation, 2011, 64(3): 287-291.
[10] SASAKI K, MARQUEZ F J, NISHIO N, et al. Promotive effect of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina Platensis [J]. Journal of Fermentationand Bioengineering, 1995, 79(5): 453-457.
[11] HEMPEL N, PETRICK I, BEHRENDT F. Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production [J]. Journal of Applied Phycology, 2012, 24(6): 1407-1418.
[12] GONG Y M, HU H H, GAO Y, et al. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(12): 1879-1890.
[13] VARFOLOMEEV S D, WASSERMAN L A. Microalgae as source of biofuel, food, fodder, and medicines [J]. Applied Biochemistry and Microbiology, 2011, 47(9): 789-807.
[14] SOSTARIC M, KLINAR D, BRICELJ M, et al. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris [J]. New Biotechnology, 2012, 29(3): 325-331.
[15] MALCATA F X. Microalgae and biofuels: a promising partnership? [J]. Trends in Biotechnology, 2011, 29(11): 542-549.
[16] 张露露,林建平,朱力,等. 从发酵液中分离提取5-氨基乙酰丙酸盐酸盐的新工艺[J]. 高校化学工程学报, 2010(4): 626-631.
ZHANG Lu-lu, LIN Jian-ping, ZHU Li, et al. A novel procedure for separating 5-aminolevulinic acid hydrochloride from fermentation broth [J]. Journal of Chemical Engineering of Chinese Universities, 2010(4): 626-631.
[17] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purificaton [J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917.
[18] BURNHAM B F. δ-Aminolevulinic acid synthase (from Rhodopseudomonas sphaeroides) [J]. Methods in Enzymology, 1970(17A): 195-204.
[19] KIM W, PARK J M, GIM G H, et al. Optimization of culture conditions and comparison of biomass productivity of three green algae [J]. Bioprocess and Biosystems Engineering, 2012, 35(1/2SI): 19-27.
[20] HARWATI T U, WILLKE T, VORLOP K D. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp [J]. Bioresource Technology, 2012, 121: 5460.
[21] KALISZEWSKI M, KWASNY M, JUZENIENE A, et al. Biological activity of 5-aminolevulinic acid and its methyl ester after storage under different conditions [J]. Journal of Photochemistry and Photobiology B-biology, 2007, 87(2): 67-72.
[22] MATTOS E R, SINGH M, CABRERA M L, et al. Effects of inoculum physiological stage on the growth characteristics of Chlorella sorokiniana cultivated under different CO2 concentrations [J]. Applied Biochemistry and Biotechnology, 2012, 168(3): 519-530.
[23] ZHU S N, WANG Z M, SHANG C H, et al. Lipid biosynthesis and metabolic regulation in microalgae[J]. Progress in Chemistry, 2011, 23(10): 2169-2176.
[24] YOO C, JUN S Y, LEE J Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide [J]. Bioresource Technology, 2010, 101: S71S74.
[25] 汪良驹,石伟,刘晖,等. 外源5-氨基乙酰丙酸处理对小白菜叶片的光合作用效应[J]. 南京农业大学学报, 2004(2): 34-38.
WANG Liang-ju, SHI Wei, LIU Hui, et al. Effect of exogenous 5-aminolevulinic acid treatment on leaf photosynthesis of pak-choi [J]. Journal of Nanjing Agricultural University, 2004(2): 34-38.
[26] 程菊娥,肖启明,成飞雪,等. 5-氨基乙酰丙酸对温室烟草的光合作用及抗逆性的促进效应[J]. 湖南农业科学,2007(4): 58-60.
CHENG Ju-e, XIAO Qi-ming, CHENG Fei-xue, et al. Promotive effect of 5-aminolevulinic acid on photosynthesis and stress resistance of tobacco in greenhouse [J]. Hunan Agricultural Sciences, 2007(4): 58-60.
[27] HOTTA Y, WATANABE K, TANAKA T, et al. Effects of 5-aminolevulinic acid on growth of plant seedlings [J]. Journal of Pesticide Science, 1997, 22(2): 102107.
[28] HOTTA Y, TANAKA T, TAKAOKA H, et al. New physiological effects of 5-aminolevulinic acid in plants: The increase of photosynthesis, chlorophyll content, and plant growth [J]. Bioscience Biotechnology and Biochemistry, 1997, 61(12): 2025-2028.
[29] BINDU R C, VIVEKANANDAN M. Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation [J]. Plant Growth Regulation, 1998, 26(1): 15-18.
[30] GONZALEZ-DOMINGUEZ M, FREIRE-PICOS M A, RAMIL E, et al. Heme-mediated transcriptional control in Kluyveromyces lactis [J]. Current Genetics, 2000, 38(4): 171-177.
[31] WANG L J, JIANG W B, LIU H, et al. Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp chinensis var. communis Tsen et Lee) seeds under salt stress [J]. Journal of Integrative Plant Biology, 2005, 47(9): 1084-1091. |