Please wait a minute...
J4  2014, Vol. 48 Issue (3): 535-540    DOI: 10.3785/j.issn.1008-973X.2014.03.023
化学工程     
5-氨基乙酰丙酸对小球藻生长及油脂积累的影响
李亚界,吴绵斌,林建平,杨立荣
浙江大学 生物质化工教育部重点实验室,化学工程与生物工程学系,浙江 杭州 310027
Effects of 5-aminolevulinic acid on Chlorella growth and lipid accumulation
LI Ya-jie, WU Mian-bin, LIN Jian-ping, YANG Li-rong
Key Laboratory of Biomass Chemical Engineering of Ministry of Education,
Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(785 KB)   HTML
摘要:

研究了不同pH调控方式和不同5-氨基乙酰丙酸(ALA)浓度对小球藻生长及油脂积累的影响.在Mf2培养基中添加50 mmol/L磷酸钾缓冲液和体积分数为5%的CO2均可维持培养液pH值为7.0~8.0,两者同时加入使小球藻的生物量质量浓度提高了186.4%.在4种不同培养基中分别添加0.597~59.7 μmol/L的ALA均可提高小球藻的生物量和总油脂的质量浓度,其中在Mf2+P+C培养基中效果最好,添加2.98 μmol/L的ALA使小球藻的生物量质量浓度提高了19.2%,总油脂的质量浓度提高了16.8%.优化ALA的添加方式后,小球藻的生物量和总油脂的质量浓度分别达1.66 g/L和0.336 g/L.外源ALA的浓度与小球藻生物量质量浓度的对应曲线呈“N”形,说明ALA在小球藻中有作为叶绿素合成前体和生长调节剂的两种作用机理.添加ALA对小球藻的比油脂含量及其组成影响不显著(P>0.05).

Abstract:

The effects of different pH control methods and 5-aminolevulinic acid (ALA) concentrations on Chlorella growth and lipid accumulation were studied. The additions of 50 mmol/L potassium phosphate buffer and volume fraction of 5% CO2 either or both, in Mf2 medium, could maintain culture medium pH within 7.0-8.0, and the biomass concentration of Chlorella was 186.4% increased by adding both phosphate buffer and volume fraction of 5% CO2. The addition of 0.597-59.7 μmol/L exogenous ALA enhanced the biomass concentration and total lipid concentration in all four kinds of media. The best enhancement effect was received in Mf2+P+C medium. The addition of 2.98 μmol/L ALA increased the biomass concentration and total lipid concentration by 19.2% and 16.8%, respectively. After further optimization of ALA adding methods, the biomass concentration and total lipid concentration reached as high as 1.66 g/L and 0.336 g/L, respectively. The relationship between exogenous ALA concentration and Chlorella biomass concentration was shown as an N-shaped curve, which indicated that ALA acted as not only precursor of chlorophyll, but also growth regulator in Chlorella. Moreover, the addition of ALA did not change the specific lipid content and lipid components remarkably (P>0.05).

出版日期: 2018-06-10
:  Q 815  
基金资助:

国家自然科学基金资助项目(20306026);国家“973” 重点基础研究发展规划资助项目 (2007CB707805);微生物药物技术创新与新药创制产学研联盟资助项目(2010ZX090401-403).

通讯作者: 吴绵斌,男,副教授.     E-mail: wumb@zju.edu.cn
作者简介: 李亚界(1987-),男,硕士生,从事5-氨基乙酰丙酸应用及藻类培养研究工作. E-mail: 32abcde@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李亚界,吴绵斌,林建平,杨立荣. 5-氨基乙酰丙酸对小球藻生长及油脂积累的影响[J]. J4, 2014, 48(3): 535-540.

LI Ya-jie, WU Mian-bin, LIN Jian-ping, YANG Li-rong. Effects of 5-aminolevulinic acid on Chlorella growth and lipid accumulation. J4, 2014, 48(3): 535-540.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.03.023        http://www.zjujournals.com/eng/CN/Y2014/V48/I3/535

[1] CZARNECKI O, GRIMM B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria [J]. Journal of Experimental Botany, 2012, 63(4Sl): 1675-1687.
[2] GUO X Q, LI Y S, YU X C. Promotive effects of 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence of tomato seedlings under suboptimal low temperature and suboptimal photon flux density stress - short communication [J]. Horticultural Science, 2012, 39(2): 97-99.
[3] YOUSSEF T, AWAD M A. Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer [J]. Journal of Plant Growth Regulation, 2008, 27(1): 1-9.
[4] AARTI P D, TANAKA R, TANAKA A. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons [J]. Physiologia Plantarum, 2006, 128(1): 186-197.
[5] AVERINA N G, GRITSKEVICH E R, VERSHILOVSKAYA I V, et al. Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid [J]. Russian Journal of Plant Physiology, 2010, 57(6): 792-798.
[6] VAVILIN D V, VERMAAS W. Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria [J]. Physiologia Plantarum, 2002, 115(1): 9-24.
[7] AKRAM N A, ASHRAF M, Al-QURAINY F. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes [J]. Scientia Horticulturae, 2012, 142: 143-148.
[8] ZHEN A, BIE Z L, HUANG Y, et al. Effects of 5-aminolevulinic acid on the H2O2-content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings [J]. Biologia Plantarum, 2012, 56(3): 566-570.
[9] HARA M, TAKAHASHI I, YAMORI M, et al. Effects of 5-aminolevulinic acid on growth and amylase activity in the radish taproot [J]. Plant Growth Regulation, 2011, 64(3): 287-291.
[10] SASAKI K, MARQUEZ F J, NISHIO N, et al. Promotive effect of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina Platensis [J]. Journal of Fermentationand Bioengineering, 1995, 79(5): 453-457.
[11] HEMPEL N, PETRICK I, BEHRENDT F. Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production [J]. Journal of Applied Phycology, 2012, 24(6): 1407-1418.
[12] GONG Y M, HU H H, GAO Y, et al. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(12): 1879-1890.
[13] VARFOLOMEEV S D, WASSERMAN L A. Microalgae as source of biofuel, food, fodder, and medicines [J]. Applied Biochemistry and Microbiology, 2011, 47(9): 789-807.
[14] SOSTARIC M, KLINAR D, BRICELJ M, et al. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris [J]. New Biotechnology, 2012, 29(3): 325-331.
[15] MALCATA F X. Microalgae and biofuels: a promising partnership? [J]. Trends in Biotechnology, 2011, 29(11): 542-549.
[16] 张露露,林建平,朱力,等. 从发酵液中分离提取5-氨基乙酰丙酸盐酸盐的新工艺[J]. 高校化学工程学报, 2010(4): 626-631.
ZHANG Lu-lu, LIN Jian-ping, ZHU Li, et al. A novel procedure for separating 5-aminolevulinic acid hydrochloride from fermentation broth [J]. Journal of Chemical Engineering of Chinese Universities, 2010(4): 626-631.
[17] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purificaton [J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917.
[18] BURNHAM B F. δ-Aminolevulinic acid synthase (from Rhodopseudomonas sphaeroides) [J]. Methods in Enzymology, 1970(17A): 195-204.
[19] KIM W, PARK J M, GIM G H, et al. Optimization of culture conditions and comparison of biomass productivity of three green algae [J]. Bioprocess and Biosystems Engineering, 2012, 35(1/2SI): 19-27.
[20] HARWATI T U, WILLKE T, VORLOP K D. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp [J]. Bioresource Technology, 2012, 121: 5460.
[21] KALISZEWSKI M, KWASNY M, JUZENIENE A, et al. Biological activity of 5-aminolevulinic acid and its methyl ester after storage under different conditions [J]. Journal of Photochemistry and Photobiology B-biology, 2007, 87(2): 67-72.
[22] MATTOS E R, SINGH M, CABRERA M L, et al. Effects of inoculum physiological stage on the growth characteristics of Chlorella sorokiniana cultivated under different CO2 concentrations [J]. Applied Biochemistry and Biotechnology, 2012, 168(3): 519-530.
[23] ZHU S N, WANG Z M, SHANG C H, et al. Lipid biosynthesis and metabolic regulation in microalgae[J]. Progress in Chemistry, 2011, 23(10): 2169-2176.
[24] YOO C, JUN S Y, LEE J Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide [J]. Bioresource Technology, 2010, 101: S71S74.
[25] 汪良驹,石伟,刘晖,等. 外源5-氨基乙酰丙酸处理对小白菜叶片的光合作用效应[J]. 南京农业大学学报, 2004(2): 34-38.
WANG Liang-ju, SHI Wei, LIU Hui, et al. Effect of exogenous 5-aminolevulinic acid treatment on leaf photosynthesis of pak-choi [J]. Journal of Nanjing Agricultural University, 2004(2): 34-38.
[26] 程菊娥,肖启明,成飞雪,等. 5-氨基乙酰丙酸对温室烟草的光合作用及抗逆性的促进效应[J]. 湖南农业科学,2007(4): 58-60.
CHENG Ju-e, XIAO Qi-ming, CHENG Fei-xue, et al. Promotive effect of 5-aminolevulinic acid on photosynthesis and stress resistance of tobacco in greenhouse [J]. Hunan Agricultural Sciences, 2007(4): 58-60.
[27] HOTTA Y, WATANABE K, TANAKA T, et al. Effects of 5-aminolevulinic acid on growth of plant seedlings [J]. Journal of Pesticide Science, 1997, 22(2): 102107.
[28] HOTTA Y, TANAKA T, TAKAOKA H, et al. New physiological effects of 5-aminolevulinic acid in plants: The increase of photosynthesis, chlorophyll content, and plant growth [J]. Bioscience Biotechnology and Biochemistry, 1997, 61(12): 2025-2028.
[29] BINDU R C, VIVEKANANDAN M. Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation [J]. Plant Growth Regulation, 1998, 26(1): 15-18.
[30] GONZALEZ-DOMINGUEZ M, FREIRE-PICOS M A, RAMIL E, et al. Heme-mediated transcriptional control in Kluyveromyces lactis [J]. Current Genetics, 2000, 38(4): 171-177.
[31] WANG L J, JIANG W B, LIU H, et al. Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp chinensis var. communis Tsen et Lee) seeds under salt stress [J]. Journal of Integrative Plant Biology, 2005, 47(9): 1084-1091.

No related articles found!