Please wait a minute...
J4  2014, Vol. 48 Issue (2): 368-376    DOI: 10.3785/j.issn.1008-973X.2014.02.027
电气工程、计算机技术     
采用分布式并行子阵波束形成的水下三维成像
韩业强1,2, 田翔1,2, 陈耀武1,2
1. 浙江大学 数字技术及仪器研究所,浙江 杭州 310027; 2. 浙江省网络多媒体技术研究重点实验室,浙江 杭州 310027
Underwater 3D imaging by distributed and parallel subarray beamforming algorithm
HAN Ye-qiang1,2, TIAN Xiang1,2, CHEN Yao-wu1,2
1. Institute of Advanced Digital Technology and Instrumentation, Zhejiang University, Hangzhou 310027, China;
2. Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Hangzhou 310027, China
 全文: PDF(2475 KB)   HTML
摘要:

针对水下三维声纳成像技术因计算负载过大而无法满足实时性需求的问题,提出一种频域分布式并行子阵波束形成算法. 基于大规模二维方形平面换能器阵列,将全面阵分解成两级分布式子阵.所有一级子阵采用并行计算架构,同时进行并行波束形成;一级子阵和二级子阵之间采用流水线分布式计算架构,在二级子阵中计算得出波束强度值.基于Matlab软件对该算法进行仿真测试,并与传统波束形成算法相对比.综合考虑主瓣宽度、旁瓣峰值、内存需求量和计算需求量4个参数,给出最合理的子阵分解方法.结果表明:该算法可以实现水下三维声纳成像,并且符合工程实践的实时性需求.

Abstract:

A distributed and parallel subarray beamforming algorithm (DPS) was proposed in order to reduce the computational load associated with the signal processing in the underwater real-time 3D sonar imaging system. A full-populated transducer array was subdivided into two stage distributed subarrays. All of the first-stage subarrays used parallel computing framework and performed parallel beamforming simultaneously. The distributed computing framework was adopted between the first and second stage subarray. The second-stage subarray acquired the final beam pattern after beamforming. The Matlab software simulated the results of the algorithm in different conditions, and compared them with the conventional beamforming algorithm (CBF). The most reasonable method of subarray decompositions was given based on four parameters: main lobe width, side lobe peak, memory requirement, and computational requirement. The results demonstrate that the DPS algorithm implements the underwater 3D sonar imaging and meets the demand of engineering utilizations.

出版日期: 2014-02-01
:  TB 56  
基金资助:

国家自然科学基金资助项目(41276090);国家“863”高技术研究发展计划资助项目(2010AA09Z104);中央高校基本科研业务费专项资金资助.

通讯作者: 田翔,男,副教授.     E-mail: tianx@mail.bme.zju.edu.cn
作者简介: 韩业强(1985—),男,博士,从事嵌入式系统、声纳信号处理科研工作.E-mail: hanyeqiang@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

韩业强, 田翔, 陈耀武. 采用分布式并行子阵波束形成的水下三维成像[J]. J4, 2014, 48(2): 368-376.

HAN Ye-qiang, TIAN Xiang, CHEN Yao-wu. Underwater 3D imaging by distributed and parallel subarray beamforming algorithm. J4, 2014, 48(2): 368-376.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.02.027        http://www.zjujournals.com/eng/CN/Y2014/V48/I2/368

[1] MURINO V, TRUCCO A. Three-dimensional image generation and processing in underwater acoustic vision [J]. Proceedings of the IEEE. 2000, 88(12): 1903-1948.
[2] HANSEN R K, CASTELLANI U, MURINO V, et al. Mosaicing of 3D sonar data sets-techniques and applications [C]∥ Proceedings of OCEANS '05 MTS/IEEE. Washington D C: IEEE, 2005: 2326-2333.
[3] HANSEN R K, ANDERSEN P A. The application of real time 3D acoustical imaging [C]∥ OCEANS '98 Conference Proceedings. Nice France: IEEE, 1998: 738-741.
[4] PALMESE M, TONI G D, TRUCCO A. 3-D underwater acoustic imaging by an efficient frequency domain beamforming [C]∥ Proceedings of the 2006 IEEE International Workshop on Imaging Systems and Techniques. Minori Italy: IEEE, 2006: 86-90.
[5] 田坦. 声纳技术[M]. 哈尔滨:哈尔滨工程大学出版社,2009: 1-15.
[6] NIELSEN R O. Sonar signal processing [M]. Boston, MA: Artech House, 1991: 55-91.
[7] PALMESE M, TRUCCO A. An efficient digital CZT beamforming design for near-Field 3-D sonar imaging [J]. IEEE Journal of Oceanic Engineering, 2010, 35(3): 584-594.
[8] PALMESE M, TRUCCO A. Acoustic imaging of underwater embedded objects: signal simulation for three-dimensional sonar instrumentation [J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55 (4): 1339-1347.
[9] PALMESE M, TRUCCO A. From 3-D sonar images to augmented reality models for objects buried on the seafloor [J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57 (4): 820-828.
[10] MARANDA B. Efficient digital beamforming in the frequency domain [J]. Journal of the Acoustical Society of America, 1989, 86(5): 1813-1819.
[11] REPETTO S, PALMESE M, TRUCCO A. Design and assessment of a lowcost 3-D sonar imaging system based on a sparse array [C]∥ Proceedings of the 2006 IEEE Instrumentation and Measurement Technology Conference. Sorrento Italy: IEEE, 2006: 410415.
[12] TRUCCO A. Thinning and weighting of large planar arrays by simulated annealing [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1999, 46(2): 347-355.
[13] JOHNSON J A, KARAMAN M, KHURI-YAKUB B T. Phased subarray processing for underwater 3D acoustic imaging [C]∥ Proceedings of OCEANS '02 MTS/IEEE. Biloxi MI USA: IEEE, 2002: 2145-2151.
[14] DAVIS A. LUGSDIN. High speed underwater inspection for port and harbour security using Coda Echoscope 3D sonar [C]∥ Proceedings of OCEANS '05 MTS/IEEE. Washington D C: IEEE, 2005: 2006-2011.
[15] VAN TREES H L. Optimum array processing [M]. New York: Wiley, 2002: 235-236.

No related articles found!