Please wait a minute...
J4  2013, Vol. 47 Issue (12): 2253-2259    DOI: 10.3785/j.issn.1008-973X.2013.12.027
计算机技术、轻工业     
氩氦刀冷冻过程数值模拟
张绍志, 王宏宇, 陈光明
浙江大学制冷与低温研究所,浙江 杭州 310027
Numerical study on freezing process of  Ar-He cryoprobe
ZHANG Shao-zhi, WANG Hong-yu, CHEN Guang-ming
Institute of Refrigeration and Cryogenics,Zhejiang University,Hangzhou 310027,China
 全文: PDF  HTML
摘要:

针对氩氦刀冷冻过程建立探针内工质流动传热和病患组织生物传热的耦合物理模型,并进行数值求解.采用此模型对氩氦刀探针的冷冻过程进行非稳态模拟,发现探针外壁面温度和热流分布都不均匀,探针端部外壁面相对于中后部降温更快,热流分布则存在一段U型区域.在冷冻过程中,探针输出的总冷量先迅速增加然后逐渐减少,最后趋于稳定.同时采用此模型研究探针内部结构对冰球形成过程的影响,结果表明:对于5 mm直径探针,在供气压力相同的情况下,内部翅片间距0.3 mm比间距0.2 mm和0.5 mm时冰球生长得更快.

Abstract:

A coupled physical model which considering the refrigerant flow and heat transfer in the cryoprobe and the biological heat transfer in diseased tissue was established and numerically solved. The simulation revealed that the temperature and heat flux distribution on the external wall of the cryoprobe are not uniform. Temperature drop is faster at the end region, and a U-shape area exists in the spatial distribution of heat flux. During the freezing process, the refrigeration output increases steeply first, then decreases gradually, and finally tends to be stable. The impact of the internal structure of the cryoprobe was also studied. For a cryoprobe of 5 mm diameter, when the supply gas pressure was fixed, the ice ball would grow faster for 0.3 mm fin gap than for 0.2 mm and 0.5 mm fin gap.

出版日期: 2013-12-01
:  TS 255.3  
基金资助:

 中央高校基本科研业务费专项资金资助项目(2012QNA4008).

通讯作者: 陈光明,男,教授,博导.     E-mail: gmchen@zju.edu.cn
作者简介: 张绍志(1972—),男,副教授,主要从事食品和生物材料冷冻/冻干保存、制冷自动化研究.E-mail: enezsz@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张绍志, 王宏宇, 陈光明. 氩氦刀冷冻过程数值模拟[J]. J4, 2013, 47(12): 2253-2259.

ZHANG Shao-zhi, WANG Hong-yu, CHEN Guang-ming. Numerical study on freezing process of  Ar-He cryoprobe. J4, 2013, 47(12): 2253-2259.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.12.027        http://www.zjujournals.com/eng/CN/Y2013/V47/I12/2253

[1] SHARON M W, FRED T L. Cryoablation: history, mechanism of action, and guidance modalities [M]. New York :Springer, 2005: 250-265.

[2] RUBINSKY B. Cryosurgery[J]. Annual Review of Biomedical Engineering, 2000, 2: 157-187.

[3] 刘静.低温生物医学工程学原理[M].北京:科学出版社,2007: 32-36.

[4] BAISSALOV B, SANDISON G A, DONNELLY B J, et al. A semi-empirical treatment planning model for optimization of multiprobe cryosurgery[J]. Physics in Medicine and Biology, 2000, 45(5): 10851098.

[5] 于天骅,王洪武,周一欣,等.Endocare型氩氦冷刀冻结与复温性能的实验研究[J].航天医学与医学工程,2003, 16(1): 60-63.

YU Tian-hua, WANG Hong-wu, ZHOU Yi-xin, et al. Measurement and analysis of operation performance of the “Endocare Cryoprobe System”[J]. Space Medicine & Medical Engineering, 2003, 16(1): 6063.

[6] 邓中山,王洪武,刘静.氩氦刀冷冻手术中冻结与复温问题的数值模拟[J].航天医学与医学工程, 2004, 17(6): 448-451

DENG Zhong-shan,WANG Hong-wu,LIU Jing. Numerical simulation of freezing and rewarming in cryosurgery by the endocare cryoprobe system[J]. Space Medicine & Medical Engineering, 2004, 17(6): 448-451.

[7] DENG Zhong-shan, LIU Jing. Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method[J]. Engineering Analysis with Boundary Elements, 2004, 28(2): 97-108.

[8] LATIF M, PETER G. Approximate analytical solution for one-dimensional tissue freezing around cylindrical cryoprobes[J]. International Journal of Thermal Sciences, 2009, 48(3): 547-553.

[9] MAGALOV Z, SHITZER A, DEGANI D. Isothermal volume contours generated in a freezing gel by embedded cryo-needles with applications to cryo-surgery[J]. Cryobiology, 2007, 55 (2) : 127-137.

[10] RABIN Y, SHITER A. Numerical solution of the multidimensional freezing problem during cryosurgery[J]. Transactions of the ASME, 1998, 120(2): 3237.

[11] YANG B H, WAN R G, MULDREW K B. A finite element model for cryosurgery with coupled phase change and thermal stress aspects[J]. Finite Elements in Analysis and Design , 2008, 44(5): 288-297.

[12] PAULI W M, GREGORY L K, RALPH K B. Cryoprobe, United States,5800487 [P].199-809.

[13] 陈长青,沈裕浩.低温换热器[M]. 北京:机械工业出版社, 1993: 8-22.

[14] NG K C, XUE H, WANG J B. Experimental and numerical study on a miniature Joule-Thomson cooler for steady-state characteristics[J]. International Journal of Heat and Mass Transfer, 2002, 45 (3): 609-618.

[15] XUE H, NG K C, WANG J B. Performance evaluation of the recuperative heat exchanger in a miniature Joule-Thomson cooler[J]. Applied Thermal Engineering, 2001, 21(18) : 1829-1844.

[16] FLYNN M T. Cryogenic engineering[M]. New York: Marcel Dekker Inc., 1997.

[17] CHIEN S B, CHEN L T, CHOU F C. A study on the transient characteristics of a self-regulating Joule-Thomson cryocooler[J]. Cryogenics , 1996, 36(12): 979-984.

[18] CHUA H T, WANG X L, TEO H Y. A numerical study of the Hampson-type miniature Joule-Thomson cryocooler[J]. International Journal of Heat and Mass Transfer, 2006, 49(3): 582-593.

[19] PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology , 1998,85( 1): 534.

[20] RABIN Y, SHITZER A, Exact solution to the one-dimensional inverse-Stefan problem in non-ideal biological tissues[J]. ASME Journal of Heat Transfer, 1995, 117(2): 425-431.

[21] SHITZER A. Cryosurgery: analysis and experimentation of cryoprobes in phase changing media[J]. Journal of Heat Transfer, 2011, 133: 011005-011017.

[22] RABIN Y. A general model for the propagation of uncertainty in measurements into heat transfer simulations and its application to cryosurgery[J]. Cryobiology, 2003, 46 (2): 109-120.

[23] 王洪武,宋华志.肿瘤超低温冷冻治疗[M]. 北京:人民卫生出版社, 2010: 79-83.

[24] 张积仁.Cryocare氩氦靶向肿瘤治疗技术[J]. 生物医学工程研究, 2005, 24(2): 128-133.

ZHANG Ji-ren. Endocare Targeted Cryoablation Therapy[J]. Journal of Biomedical Engineering Research, 2005, 24(2): 128-133.

No related articles found!