Please wait a minute...
J4  2013, Vol. 47 Issue (12): 2208-2211    DOI: 10.3785/j.issn.1008-973X.2013.12.021
环境工程     
电除尘器中离子风的实验研究
曾宇翾, 沈欣军, 章旭明, 刘振,闫克平
浙江大学 生物质化工教育部重点实验室,浙江 杭州 310027
Experimental study of ionic wind in an electrostatic precipitator
ZENG Yu-xuan, SHEN Xin-jun, ZHANG Xu-ming, LIU Zhen, YAN Ke-ping
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, University,Hangzhou 310027, China
 全文: PDF  HTML
摘要:

利用二维激光粒子成像测速技术(2D-PIV),在接近起晕电压的条件下研究了针-板型电除尘器中离子风产生和传播的规律.实验中,在没有外加气流的条件下对离子风进行测试,测试点位于放电电极附近,示踪粒子为香烟.结果表明:离子风能在相对较低的电压(-3 kV)下产生,并在针-板电极间形成典型的离子风流场;离子风在电场的加速下,当其离开放电极为5~15 mm时,可以达到最大值,随后其速度开始下降,且离子风速度与施加于高压电极的电压满足线性关系;输入功率是决定离子风速度的关键因素,输入功率对离子风的加速作用远大于电极间距对离子风速度的影响.

Abstract:

With the corona discharge generated near corona inception voltage, the processes of generation and acceleration of ionic wind inside a needle-plate type electrostatic precipitator(ESP) were studied by using a two-dimensional particle image velocimetry (2D-PIV) system. The measurements were carried out without external flows in order to investigate the ionic wind itself. Measuring point focused on the area close to the discharge electrode and cigarette smoke was used as the seeding particle. Experimental results show that: ionic wind can be generated under -3 kV and a typical ionic wind flow map is presented between needle and plate electrodes. The ionic wind is usually accelerated up to its maximum within 5-15 mm distance away from the discharge electrode with the acceleration of electric field, and then the ionic wind velocity begins to decline. The ionic wind velocity is almost linearly proportional to the applied voltage. In addition, the input power is the key factor determining the ionic wind velocity. Distances between needle and plate electrodes influence the performance of the ionic wind, but less effective comparing with the input power.

出版日期: 2013-12-01
:  X 513  
通讯作者: 闫克平,男,教授,博导.     E-mail: kyan@zju.edu.cn
作者简介: 曾宇翾(1986—),男,硕士生,从事离子风与细颗粒物控制方面的研究.E-mail: icespxi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

曾宇翾, 沈欣军, 章旭明, 刘振,闫克平. 电除尘器中离子风的实验研究[J]. J4, 2013, 47(12): 2208-2211.

ZENG Yu-xuan, SHEN Xin-jun, ZHANG Xu-ming, LIU Zhen, YAN Ke-ping. Experimental study of ionic wind in an electrostatic precipitator. J4, 2013, 47(12): 2208-2211.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.12.021        http://www.zjujournals.com/eng/CN/Y2013/V47/I12/2208

[1] 余洁.中国燃煤工业锅炉现状[J].洁净煤技术,2012,18(3): 8991, 1-13.

YU Jie. Status and transformation measures of industrial coal-fired boiler in China[J]. Clean Coal Technology, 2012, 18(3): 8991, 1-13.

[2] 中国环境保护产业协会电除尘委员会.我国电除尘行业2011年发展综述[J].中国环保产业,2012(7): 14-20.

Electrical Precipitation Committee of CAEPI. China development report on electrical precipitation industry in 2011[J]. China Environment Protection Industry, 2012 (7): 14-20.

[3] YAN Ke-ping. Electrostatic precipitator: 11th international conference on electrostatic precipitator [M]. Hangzhou: Zhejiang University Press, 2010.

[4] ZHU Ji-bao, ZHAO Qin-xia, YAO Yu-ping, et al. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator[J]. Journal of Electrostatics, 2012, 70: 285-291.

[5] LONG Zheng-wei, YAO Qiang. Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators[J]. Journal of Aerosol Science, 2010, 41(7): 702-718.

[6] LEI Hong, WANG Lian-ze, WU Zi-niu. EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator[J]. Journal of Electrostatics, 2008, 66(3/4): 130-141.

[7] NIEWULIS A, PODLINSKI J, MIZERACZYK J. Electrohydrodynamic flow patterns in a narrow electrostatic precipitator with longitudinal or transverse wire electrode[J]. Journal of Electrostatics, 2009, 67: 123-127.

[8] PODLINSKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator[J]. Journal of Electrostatics, 2009, 67(2/3): 99-104.

[9] PODLINSKI J, MIZERACZYK J. Visualization of dust collection in DC-Corona-Driven electrostatic precipitator [J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2260-2261.

[10] KONG X, ALSHEHHI M, GOHARZADEH A. Experimental investigation of EHD flow regimes map in an electrostatic air-oil droplets separator[C]∥ Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition IMECE2011. Denver, Colorado, USA: ASME, 2011.

[11] LEE J, LEE S, JANG J. Numerical analysis on the electrostatic capture of airborne nanoparticles and viruses in a homemade particle concentrator without a unipolar charger[J]. Journal of Electrostatics, 2012, 70: 192-200.

[12] 李庆,杨振亚,王巧艳,等.线板放电电流体的实验研究与数值模拟[J].科学通报,2011,56(35): 2947-2951.

LI Qing, YANG Zhen-ya, WANG Qiao-yan, et al. Experimental research and numerical simulation of electro-hydrodynamic in wire-plate discharge channel [J]. Chinese Science Bulletin(Chinese Ver), 2011, 56(35): 2947-2951.

[13] LONG Zheng-wei, YAO Qiang. Numerical simulation of the flow and the collection mechanism inside a scale hybrid particulate collector[J]. Powder Technology, 2012, 215/216: 26-37.

[14] ROBINSON M. Movement of air in the electric wind of the corona discharge[J]. IEEE Transactions on Communications, 1961, 80(2): 143-150.

[1] 金晗辉, 李清平, 陈丽华, 樊建人, 吕琳. 室内悬浮颗粒物分布及输运特性的实验研究[J]. J4, 2010, 44(9): 1793-1797.