Please wait a minute...
J4  2013, Vol. 47 Issue (12): 2146-2152    DOI: 10.3785/j.issn.1008-973X.2013.12.011
计算机技术,无线电电子学     
饱和黏弹性土中端承桩扭转振动的对比分析
闻敏杰1,2, 徐金明2, 李强3
1. 嘉兴职业技术学院 生物与环境分院,浙江 嘉兴 314036;2. 上海大学 土木工程系,上海 200072; 3. 浙江海洋学院 船舶与建筑工程学院,浙江 舟山 316004
Comparative analysis for torsional vibration of an end-bearing pile in saturated viscoelastic soil
WEN Min-jie1,2, XU Jin-ming2,  LI Qiang3
1. Biological and Environmental Branch, Jiaxing Vocational Technical College, Jiaxing 314036, China; 2. Department of Civil Engineering, Shanghai University, Shanghai 200072, China; 3. School of Naval Architecture and Civil Engineering, Zhejiang Ocean University, Zhoushan 316004, China
 全文: PDF  HTML
摘要:

采用Kelvin模型模拟饱和土体和桩的相对滑移,在频率域内研究了饱和黏弹性土层中端承桩的扭转耦合振动.饱和土体的力学行为利用Biot模型描述.将土骨架视为具有分数阶导数本构的黏弹性体,采用Novak薄层法,得到了桩扭转振动时饱和黏弹性土层的动力阻抗.利用Euler-Bernoulli杆模型模拟桩的力学行为,给出了饱和分数导数黏弹性土层中端承桩扭转振动的分析方法和桩顶动力复刚度的解析表达式.在此基础上,分别对以下几个方面进行了对比分析:经典弹性模型、分数导数黏弹性模型和标准线性固体模型的结果;三维模型和薄层法的结果;桩土界面有无相对滑移的结果.考察了分数导数模型参数、饱和土和桩各参数对桩顶刚度因子和等效阻尼的影响.结果表明:在高频处完全接触条件下桩顶刚度因子和等效阻尼的振幅小于滑移条件下;随着阶数和材料参数比的增加,桩顶刚度因子和等效阻尼都有所减小.

Abstract:

The imperfect contact between saturated soil and pile was considered by the Kelvin model. The torsional coupled vibration of an end-bearing pile in saturated viscoelastic soil was investigated in frequency domain. Biot’s theory was used to describe saturated soil. The soil skeleton was treated as a viscoelastic medium with fractional derivative constitutive relation. The dynamic impedance of the saturated viscoelastic soil to torsional vibration of the pile was obtained by the Novak’s layer method. The mechanical behavior of the pile was simulated by the Euler-Bernoulli rod model. The analysis method for the torsional vibration of an end-bearing pile in saturated fractional derivative viscoelastic soil was presented, and the analytical expression of the dynamic complex stiffness at the pile top was obtained.
On this basis, the results of classic elastic, fractional derivative viscoelastic and standard linear solid model, the results of three-dimensional model and Novak’s layer method, the results of with or without the perfect contact between pile and soil were respectively compared and analyzed.
The influences of the parameters of fractional derivative model, saturated soil and pile on the dynamic stiffness factor and equivalent damping of the pile top were analyzed. The results show that the amplitudes of stiffness factor and equivalent damping at the pile top for the perfect contact condition are less than those for the imperfect contact condition at high frequencies. The stiffness factor and equivalent damping at the pile top decrease as the order and the ratio of material parameter increase.

出版日期: 2013-12-01
:  TU 435  
基金资助:

浙江省自然科学基金资助项目(LY12E09006);浙江省公益技术研究社会发展项目(2013C33G2110023).

通讯作者: 徐金明,男,教授.     E-mail: xjming@163.com
作者简介: 闻敏杰(1986—), 男, 博士生,从事土动力学方面的研究.E-mail: 7279026@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

闻敏杰, 徐金明, 李强. 饱和黏弹性土中端承桩扭转振动的对比分析[J]. J4, 2013, 47(12): 2146-2152.

WEN Min-jie, XU Jin-ming, LI Qiang. Comparative analysis for torsional vibration of an end-bearing pile in saturated viscoelastic soil. J4, 2013, 47(12): 2146-2152.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.12.011        http://www.zjujournals.com/eng/CN/Y2013/V47/I12/2146

[1] SELVADURAI A P S, RAJAPAKSE R K N D. Variational schemes for torsion of non-uniform bars embedded in elastic media[J]. Journal of Engineering Mechanics, 1987, 113(10): 1534-1550.

[2] MILITANO G, RAJAPAKSE R K N D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading[J]. Geotechnique, 1999, 49(1): 91-109.

[3] HESHAM M, NAGGAR E I. Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structured Engineering and Mechanics, 2000, 10(4): 299-312.

[4] NOGAMI T, REN F Z, CHEN J W, et al. Vertical vibration of pile in vibration-induced excess pore pressure field[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(5): 422-429.

[5] ZENG X, RAJAPAKSE R K N D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering Mechanics, 1999, 125(9): 1048-1055.

[6] YANG X, PAN Y. Axisymmetrical analytical solution for vertical of end-bearing pile in saturated viscoelastic soil layer[J]. Applied Mathematics and Mechanics, 2010, 31(2): 193-204.

[7] 张智卿,王奎华,谢康和.饱和土层中桩的扭转振动响应分析[J].浙江大学学报:工学版,2006, 40(7): 1211-1218.

ZHANG Zhi-qing, WANG Kui-hua, XIE Kang-he. Study on torsional vibration of pile embedded in saturated soil[J]. Journal of Zhejiang University: Engineering Science, 2006, 40(7): 1211-1218.

[8] 陈刚,蔡袁强,徐长节.横观各向同性饱和土中埋置弹性桩的扭转振动[J].浙江大学学报:工学版, 2008, 42(1): 13-18.

CHEN Gang, CAI Yuan-qiang, XU Chang-jie. Torsional vibration of elastic pile in transversely isotropic saturated soil[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(1): 13-18.

[9] 靳建明,张智卿,王奎华,等.任意形式荷载作用下饱和土中桩的扭转振动特性研究[J].浙江大学学报:工学版,2008, 42(1): 13-18.

JIN Jian-ming, ZHANG Zhi-qing, WANG Kui-hua, et al. Dynamic torsional response of a pile embedded in porous-saturated soil under arbitrary transient loading[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(1): 13-18.

[10] WANG K H, ZHANG Z Q, LEO C J, et al. Dynamic torsional response an end bearing pile in saturated poroelastic medium[J]. Computers and Geotechnics, 2008, 35(2): 450-458.

[11] CAI Y Q, CHEN G, XU C J, et al. Torsional response of pile embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(12): 1143-1148.

[12] CHEN G, CAI Y Q, LU F Y, et al. Dynamic response of a pile in a transversely isotropic saturated soil to transient torsional loading[J]. Computers and Geotechnics, 2008, 35(2): 165-172.

[13] NOVAK M. Dynamic stiffness and damping of pile[J]. Canadian Geotechnical Journal, 1974, 11(4): 574-598.

[14] NOVAK M, ABOUL-ELLA F. Impedance of functions of piles in layered media[J]. Journal of Engineering Mechanical Division, 1978, 104(3): 643-661.

[15] 尚守平,余俊,王海东,等.饱和土中桩水平振动分析[J].岩土工程学报,2007,29(11): 1696-1702.

SHANG Shou-ping, YU Jun, WANG Hai-dong, et al. Horizontal vibration of piles in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1696-1702.

[16] 刘林超,杨骁.基于薄层法的饱和土桩纵向振动研究[J].岩土力学,2010, 31(1): 92-98.

LIU Lin-chao, Yang Xiao. Study of longitudinal vibrations of pile in saturated soil based on layer method[J]. Rock and Soil Mechanics, 2010, 31(1): 92-98.

[17] 徐长节,蔡袁强.粘弹性饱和土中球空腔的动力响应[J].土木工程学报,2001, 34(4): 88-92.

XU Chang-jie, CAI Yuan-qiang. Dynamic response of spherical cavity in viscoelastic saturated soils[J]. China Civil Engineering Journal, 2001, 34(4): 8892.

[18] LIU G B, XIE K H. Transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil[J]. Journal of Zhejiang University Science, 2005, 6A(3): 194-201.

[19] 韩同春,刘干斌.任意荷载下黏弹性饱和土体中球壳的动力响应研究[J].浙江大学学报:工学版, 2006, 40(5): 816-821.

HAN Tong-chun, LIU Gan-bin. Dynamic response of spherical shell in viscoelastic saturated soil under arbitrary loads[J]. Journal of Zhejiang University: Engineering Science, 2006, 40(5): 816-821.

[20] 朱正佑,李根国,程昌钧.具有分数导数本构关系的粘弹性Timoshenko梁的静动力学行为分析[J].应用数学和力学,2003, 23(1): 110.

ZHU Zheng-you, LI Gen-guo, CHEN Chang-jun. Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation[J]. Applied Mathematics and Mechanics, 2003, 23(1): 1-10.

[21] 刘林超,闫启方,杨骁.分数导数粘弹性土层模型中桩基竖向振动特性研究[J].工程力学,2011, 28(8): 177-182.

LIU Lin-chao, YAN Qi-fang, YANG Xiao. Vertical vibration of single pile in soil described by fractional derivative viscoelastic model[J]. Engineering Mechanics, 2011, 28(8): 177-182.

[22] 刘林超,杨骁.分数导数模型描述的饱和土桩纵向振动分析[J].岩土力学,2011,32(2): 526-532.

LIU Lin-chao, YANG Xiao. Analysis of vertical vibrations of a pile in saturated soil described by fractional derivative model[J]. Rock and Soil Mechanics, 2011, 32(2): 526-532.

[23] 李强.饱和土中端承桩非完全黏结下的竖向振动特性[J].水利学报,2007, 38(3): 349-356.

LI Qiang. Vertical vibration of piles embedded in saturated soil considering the imperfect contact[J]. Shui Li Xue Bao, 2007, 38(3): 349-356.

[24] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous media[J]. The Journal of the Acoustical Society of America, 1956a, 28(2): 179-191.

[25] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482-1498.

[26] 汪越胜, 于桂兰, 章梓茂, 等. 复杂界面(界面层)条件下的弹性波传播问题研究综述[J]. 力学进展, 2000, 30(3): 378-390.

WANG Yue-sheng, YU Gui-lan, ZHANG Zi-mao, et al. Review on elastic wave propagation under complex interface(interface layer) conditions[J]. Advances in Mechanics, 2000, 30(3): 378-390.

[1] 高华喜, 闻敏杰, 张斌. 具有圆形隧道的准饱和黏弹性土振动响应[J]. J4, 2013, 47(4): 615-621.
[2] 王鹏, 丁光亚, 蔡袁强, 王军. 考虑埋深的平面波作用下基础振动分析模型[J]. J4, 2012, 46(12): 2224-2230.
[3] 侯键,夏唐代,孙苗苗,孔祥冰. 任意排列的固定刚性桩屏障对SH波的多重散射[J]. J4, 2012, 46(7): 1269-1274.
[4] 蔡袁强,陈成振,孙宏磊. 黏弹性饱和土中隧道在爆炸荷载作用下的动力响应[J]. J4, 2011, 45(9): 1657-1663.
[5] 胡秀青, 蔡袁强, 徐长节. 饱和地基中埋置基础摇摆振动的动力放大系数[J]. J4, 2010, 44(5): 935-941.